\qquad
\qquad

Instructions

1. Write your Name and PID in the spaces provided above.
2. Make sure your Name is on every page.
3. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
4. Put away ANY devices that can be used for communication or can access the Internet.
5. You may use one handwritten page of notes, but no books or other assistance during this exam.
6. Read each question carefully and answer each question completely.
7. Write your solutions clearly in the spaces provided. Work on scratch paper will not be graded.
8. Show all of your work. No credit will be given for unsupported answers, even if correct.
(1 point) 0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
v. A (page 2 of 6)

Name:
(6 points) 1. Find the $4^{\text {th }}$ roots of $-i$. You may leave them in polar form.
v. A (page 3 of $\boldsymbol{6}$)

Name:
(6 points) 2. Determine all values of $(\sqrt{3}+i)^{i}$.

v. A (page 4 of 6)

Name:
(6 points) 3. Find the fractional linear transformation $g: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ that maps $(-i,-1, i)$ to $(0,1, \infty)$.

v. A (page 5 of 6)

Name: \qquad
(6 points) 4. Suppose $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $g(x, y)=(u(x, y), v(x, y))$ is differentiable with $\operatorname{Dg}=\left(\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right)=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$.
(a) Explain how you know that g is analytic on \mathbb{R}^{2}.
(b) Given that $g(0,0)=(0,1)$, write an explicit formula for $g(x, y)$.
(c) Write $g: \mathbb{C} \rightarrow \mathbb{C}$ in complex form $g(z)$.

v. A (page 6 of 6)

Name: \qquad
(6 points) 5. Let $D=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$, the unit disk in \mathbb{R}^{2}. Evaluate the line integral

$$
\int_{\partial D} x y^{2} d x+\left(x^{2} y+4 x\right) d y
$$

by using Green's theorem.

