Math 120A September 6, 2023

Question 1 Given $f(z) = \sum_{k=-\infty} b_k z^k$ for all |z| > R. f(z) has a removable singularity at ∞ if

- *A. $b_k = 0$ for all integers k > 0.
 - B. the principle part of f(z) vanishes at ∞ .
 - C. there is an integer $N \ge 1$ for which $b_N \ne 0$ but $b_k = 0$ for all integers k > N.
 - D. $b_k \neq 0$ for infinitely many integers k > 0.
 - E. none of the above; you can't remove singularities, especially at ∞ .

Question 2 A function f(z) has a nonzero residue at z_0 . We can conclude that

- A. z_0 is an isolated singularity of f(z)
- B. the principal part of f(z) is not zero.
- C. z_0 is the only singularity of f(z) in $|z z_0| < \rho$ and $\int_{|\zeta z_0| = \epsilon} f(\zeta) \, d\zeta \neq 0 \text{ for every } 0 < \epsilon < \rho.$
- *D. all of the above.
 - E. none of the above.

Question 3 Suppose f(z) has an essential singularity at z_0 . Then,

- A. Res $[f(z), z_0]$, the residue of f(z) at z_0 , is undefined.
- B. $\int_{|\zeta-z_0|=\epsilon} f(\zeta) d\zeta$ is not defined for any $\epsilon>0$.
- C. f(z) is not analytic at ∞ .
- D. all of the above.
- *E. none of the above.

Question 4 Let
$$f(z) = \frac{1}{(z-z_0)^2}$$
. Then,

A.
$$\int_{|\zeta-z_0|=\epsilon} f(\zeta) d\zeta = 0$$
 for every $\epsilon > 0$.

B.
$$\int_{|\zeta-z_0|=\epsilon} f(\zeta) d\zeta = 2\pi i$$
 for every $\epsilon > 0$.

- C. $Res[f(z), z_0] = 0$.
- *D. **A** and **C**.
 - E. none of the above.

Question 5 Let
$$f(z) = \frac{1}{(z-z_0)}$$
. Then,

A.
$$\int_{|\zeta-z_0|=\epsilon} f(\zeta) d\zeta = 0$$
 for every $\epsilon > 0$.

- *B. $\int_{|\zeta-z_0|=\epsilon} f(\zeta) d\zeta = 2\pi i$ for every $\epsilon > 0$.
 - C. $Res[f(z), z_0] = 0$.
 - D. A and C.
 - E. none of the above.