Math 120A
September 5, 2023

Question 1 Let z_{0} be an isolated singularity of $f(z)$. Then,
*A. for some $r>0, f(z)$ is analytic on $\left\{z\left|0<\left|z-z_{0}\right|<r\right\}\right.$.
B. $\lim _{z \rightarrow z_{0}}|f(z)|$ diverges to $+\infty$.
C. $\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{z-z_{0}}=f\left(z_{0}\right)$ for some $r>0$ by Cauchy's integral formula.
D. All of the above.
E. None of the above. Singularities can't be isolated.

Question $2 \log (z)$ is not analytic at $z_{0}=0 . z_{0}=0$ is
A. an isolated singularity of $\log (z)$.
*B. a branch point of $\log (z)$.
C. an essential singularity of $\log (z)$.
D. A and B
E. A and C

Question $3 f(z)$ has a pole of order N at infinity if
A. the principal part of f at ∞ is a polynomial of degree N; that is, $P_{\infty}(z)=b_{N} z^{N}+b_{N-1} z^{N-1}+\cdots+b_{1} z+b_{0}$.
B. $g(w)=f(1 / w)$ has a pole of order N at $w=0$.
C. $g(w)=f(1 / w)$ has a zero of order N at $w=0$.
*D. A and \mathbf{B}
E. A and C

Question 4 Suppose z_{0} is an isolated singularity of $f(z)$ so that $f(z)$ is analytic when $0<\left|z-z_{0}\right|<\rho$. Then,
A. $f(z)=f_{0}(z)+f_{1}(z)$ with $f_{0}(z)$ analytic for $\left|z-z_{0}\right|<\rho$ and $f_{1}(z)$ analytic for $\left|z-z_{0}\right|>0$.
B. If $0<\left|z-z_{0}\right|<\rho, f(z)$ is represented by its Laurent series:

$$
f(z)=\sum_{k=1}^{\infty} \frac{b_{k}}{\left(z-z_{0}\right)^{k}}+\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k} .
$$

C. $f_{1}(z)=\sum_{k=1}^{\infty} \frac{b_{k}}{\left(z-z_{0}\right)^{k}}$ is the principal part of $f(z)$ at z_{0}.
*D. All of the above.
E. None of the above. Functions can't be expanded around a singularity.

Question 5 What functions are analytic on the entire extended complex plane \mathbb{C}^{*} ?
*A. constant functions $f(z)=c$
B. polynomials $f(z)=a_{0}+a_{1} z+\cdots+a_{N} z^{N}$
C. exponential functions $f(z)=a \exp (c z)$
D. A and B
E. all of the above

