Math 120A
August 30, 2023

Question 1 Let $f(z)=\frac{1}{z^{2}+4}=\frac{1}{4} \cdot \frac{1}{1+\left(\frac{z}{2}\right)^{2}}$.
A. $f(z)=\frac{1}{4} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{z}{2}\right)^{2 k}$ is the power series for f centered at 0 and converges for $|z|<2$.
B. $f(z)$ is analytic at ∞ since $g(w)=f\left(\frac{1}{w}\right)=\frac{w^{2}}{1+4 w^{2}}$ is analytic at $w=0$.
C. $f(z)=\frac{1}{4} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{2}{z}\right)^{2 k+2}$ is the power series for f at ∞ and converges for $|z|>2$.
D. B and C.
*E. All of the above.

Question 2 An analytic function $f(z)$ has a zero of order N at z_{0} if
A. $f(z)=h(z)\left(z-z_{0}\right)^{N}$ for some analytic function $h(z)$ with $h\left(z_{0}\right) \neq 0$.
B. $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(N-1)}\left(z_{0}\right)=0$ and $f^{(N)}\left(z_{0}\right) \neq 0$.
C. $f(z)=g(z)^{N}$ for some analytic function $g(z)$ with $g^{\prime}\left(z_{0}\right) \neq 0$.
*D. All of the above.
E. None of the above. Zeros don't have any order.

Question 3 Given $R>0$, let $\gamma=\{z \in \mathbb{C}| | z \mid=R\}$. Then,
A. γ can be parametrized by $z(t)=R e^{i t}$ with $0 \leq t<2 \pi$.
B. $\int_{\gamma}\left|z^{2}\right| d z=\int_{0}^{2 \pi} R^{2} \cdot R i e^{i t} d t=\left.R^{3} e^{i t}\right|_{t=0} ^{2 \pi}=0$.
C. $\int_{\gamma}\left|z^{2}\right||d z|=\int_{0}^{2 \pi} R^{2} \cdot R d t=2 \pi R^{3}$.
*D. All of the above.
E. None of the above. Complex line integrals can't be real.

Question 4 To develop a power series $\sum_{k=0}^{\infty} a_{k}(z-i)^{k}$ centered at $z_{0}=i$ for $f(z)=\frac{1}{z-1}$, one could write $f(z)=-\frac{1}{1-z}=-(1-z)^{-1}$ and:
A. Compute $f^{(k)}(z)=-k!(1-z)^{-(k+1)}=\frac{k!}{(1-z)^{k+1}}$ so that

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}(i)}{k!}(z-i)^{k}=\sum_{k=0}^{\infty}-\frac{1}{(1-i)^{k+1}}(z-i)^{k} .
$$

B. Write $f(z)=-\frac{1}{(1-i)-(z-i)}=-\frac{1}{1-i} \cdot \frac{1}{1-\left(\frac{z-i}{1-i}\right)}$ so that

$$
f(z)=-\frac{1}{1-i} \sum_{k=0}^{\infty}\left(\frac{z-i}{1-i}\right)^{k}=\sum_{k=0}^{\infty}-\frac{1}{(1-i)^{k+1}}(z-i)^{k} .
$$

${ }^{*}$ C. Either \mathbf{A} or \mathbf{B}. Both are great ways to develop the power series.
D. Neither A nor B. $f(z)=\frac{1}{z-1}$ is not analytic on any disk centered at $z_{0}=i$.
E. This selection has intentionally been left blank.

Question 5 The function $f(z)=\frac{1}{z}+\frac{1}{z^{5}}$ can be written $f(z)=\frac{z^{4}+1}{z^{5}}$. We can conclude that
A. $\frac{1}{z}+\frac{1}{z^{5}}$ is the Laurent series of f for $|z|>0$.
B. $f(z)$ has four simple zeros: $z \in\left\{e^{i \frac{\pi}{4}}, e^{i \frac{3 \pi}{4}}, e^{i \frac{5 \pi}{4}}, e^{i \frac{7 \pi}{4}}\right\}$.
C. $f(z)$ has a simple zero at ∞.
D. $g(w)=f(1 / w)=w\left(1+w^{4}\right)$ has a simple zero at $w=0$.
*E. All of the above.

