Math 120A
August 29, 2023

Question 1 Suppose $\sum_{k=0}^{\infty} a_{k} z_{0}^{k}$ converges. We conclude that $\sum_{k=0}^{\infty} a_{k} z^{k}$
A. converges absolutely for every z with $|z|<\left|z_{0}\right|$.
B. converges uniformly for every z with $|z| \leq r$ whenever $r<\left|z_{0}\right|$.
C. converges absolutely for every z with $|z|=\left|z_{0}\right|$.
*D. A and B.
E. all of the above.

Question 2 Consider the power series $f(z)=\sum_{k=1}^{\infty} \frac{1}{k} z^{k}$. Then,
A. $f(-1)=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$ converges by alternating series test.
B. The radius of convergence $R \geq 1$ for $f(z)$ since it converges for $z=-1$ and $|-1|=1$.
C. The radius of convergence $R=1$ for $f(z)$ by the ratio test since $\lim _{k \rightarrow \infty} \frac{1 / k}{1 /(k+1)}=1$.
D. $f(1)=\sum_{k=1}^{\infty} \frac{1}{k}$ diverges.
*E. all of the above.

Question 3 Let $f(z)=\frac{1}{z^{2}+4}=\frac{1}{4} \cdot \frac{1}{1+\left(\frac{z}{2}\right)^{2}}$.
A. $f(z)=\frac{1}{4} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{z}{2}\right)^{2 k}$ is the power series for f centered at 0 and converges for $|z|<2$.
B. $f(z)$ is analytic at ∞ since $g(w)=f\left(\frac{1}{w}\right)=\frac{w^{2}}{1+4 w^{2}}$ is analytic at $w=0$.
C. $f(z)=\frac{1}{4} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{2}{z}\right)^{2 k+2}$ is the power series for f at ∞ and converges for $|z|>2$.
D. B and C.
*E. All of the above.

Question 4 Cauchy's integral formula states that a function $f(z)$ analytic on a bounded domain D and smooth on $D \cup \partial D$ satisfies

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(w)}{w-z} d w, \quad z \in D .
$$

This is important because
A. the integral can be differentiated with respect to z.
B. by induction, one sees that for every $z \in D$, $f^{(m)}(z)=\frac{m!}{2 \pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{m+1}} d w$ for all integers $m \geq 0$.
C. one can conclude that a function $f(z)$ that has one complex derivative at each $z \in D$ must have complex derivatives of all orders at each $z \in D$.
*D. All of the above, and it's absolutely amazing.
E. None of the above, Cauchy's integral formula is as useless as it is aesthetically pleasing.

Question 5 It is a foundational result of complex analysis that a function $f(z)$ analytic on a disk $\left|z-z_{0}\right|<R$ is represented by a power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence R. Why is this true?
A. That's what analytic means. It's the definition.
B. Real-valued functions with derivatives of all orders are analytic. It works the same for complex-valued functions.
C. So that the studying complex analysis can be made a little bit simpler.
*D. Cauchy's theorem allows us to write

$$
f(z)=\sum_{k=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(w)}{\left(w-z_{0}\right)^{k+1}} d w\right)\left(z-z_{0}\right)^{k}
$$ for each fixed $0<r<R$.

E. None of the above. What's a power series?

