Math 120A
August 24, 2023

Question 1 Cauchy's integral formula states that a function $f(z)$ analytic on a bounded domain D and smooth on $D \cup \partial D$ satisfies

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(w)}{w-z} d w, \quad z \in D .
$$

This is important because
A. the integral can be differentiated with respect to z.
B. by induction, one sees that for every $z \in D$, $f^{(m)}(z)=\frac{m!}{2 \pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{m+1}} d w$ for all integers $m \geq 0$.
C. one can conclude that a function $f(z)$ that has one complex derivative at each $z \in D$ must have complex derivatives of all orders at each $z \in D$.
*D. All of the above, and it's absolutely amazing.
E. None of the above, Cauchy's integral formula is as useless as it is aesthetically pleasing.

Question 2 Let γ be the curve $|z|=2$ with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^{n}}{z-3} d z$
*A. is equal to 0 by Cauchy's theorem.
B. is equal to 3^{n} by the Cauchy integral theorem.
C. is equal to $2 \pi i 3^{n}$ by the Cauchy integral theorem.
D. is undefined because $\frac{z^{n}}{z-3}$ is undefined at $z=3$.
E. none of the above.

Question 3 Let γ be the curve $|z|=2$ with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^{n}}{z-1} d z$
A. is equal to 0 by Cauchy's theorem.
B. is equal to 1 by the Cauchy integral theorem.
${ }^{*} C$. is equal to $2 \pi i$ by the Cauchy integral theorem.
D. is undefined because $\frac{z^{n}}{z-1}$ is undefined at $z=1$.
E. none of the above.

Question 4 Let γ be the curve $|z|=2$ with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^{n}}{z+2} d z$
A. is equal to 0 by Cauchy's theorem.
B. is equal to $(-2)^{n}$ by the Cauchy integral theorem.
C. is equal to $2 \pi i(-2)^{2}$ by the Cauchy integral theorem.
*D. is undefined because $\frac{z^{n}}{z+2}$ is undefined at $z=-2$.
E. none of the above.

Question 5 The functions $f_{k}:[0,1] \rightarrow \mathbb{R}$ given by $f_{k}(x)=x^{k}$
A. are all continuous.
B. converge pointwise to a discontinuous function.
C. converge uniformly to a discontinuous function.
*D. A and B.
E. all of the above; if they converge uniformly, they also converge pointwise.

