Math 120A August 23, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Cauchy's integral formula states that a function f(z) analytic on a bounded domain D and smooth on $D \cup \partial D$ satisfies

$$f(z) = rac{1}{2\pi i} \int_{\partial D} rac{f(w)}{z-w} dw, \ z \in D.$$

This is important because

A. the integral can be differentiated with respect to w.

B. by induction, one sees that for every
$$z \in D$$
,

$$f^{(m)}(z) = \frac{m!}{2\pi i} \int_{\partial D} \frac{f(w)}{(z-w)^{m+1}} dw \text{ for all integers } m \ge 0.$$

- C. one can conclude that a function f(z) that has one complex derivative at each $z \in D$ must have complex derivatives of all orders at each $z \in D$.
- *D. All of the above, and it's absolutely amazing.
 - E. None of the above, Cauchy's integral formula is as useless as it is aesthetically pleasing.

Question 2 Let γ be the curve |z| = 2 with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^n}{z-3} dz$

*A. is equal to 0 by Cauchy's theorem.

B. is equal to 3^n by the Cauchy integral theorem.

C. is equal to $2\pi i 3^n$ by the Cauchy integral theorem.

D. is undefined because
$$\frac{z^n}{z-3}$$
 is undefined at $z = 3$.

E. none of the above.

Question 3 Let γ be the curve |z| = 2 with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^n}{z-1} dz$

A. is equal to 0 by Cauchy's theorem.

B. is equal to 1 by the Cauchy integral theorem.

*C. is equal to $2\pi i$ by the Cauchy integral theorem.

D. is undefined because
$$\frac{z^n}{z-1}$$
 is undefined at $z = 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

E. none of the above.

Question 4 Let γ be the curve |z| = 2 with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^n}{z+2} dz$

- A. is equal to 0 by Cauchy's theorem.
- B. is equal to $(-2)^n$ by the Cauchy integral theorem.
- C. is equal to $2\pi i (-2)^2$ by the Cauchy integral theorem.

*D. is undefined because
$$\frac{z^n}{z+2}$$
 is undefined at $z = -2$.

E. none of the above.

 $Question \ 5$ Liouville's theorem asserts every bounded entire function is constant. Thus we can conclude that

- A. if f(z) is analytic on the complex plane \mathbb{C} and there is a constant M > 0 for which $|f(z)| \le M$ for every $z \in \mathbb{C}$, then f'(z) = 0 at every $z \in \mathbb{C}$.
- B. if p(z) is a nonconstant polynomial, then p(z) has a complex zero; otherwise, $f(z) = \frac{1}{p(z)}$ would be a nonconstant bounded entire function.
- C. the trigonometric functions cos(z) and sin(z) are unbounded since they are nonconstant entire functions.

- D. $\boldsymbol{A} \text{ and } \boldsymbol{B}$
- *E. A, B, and C