Math 120A
August 22, 2023

Question 1 Recall that the differential $-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$ is defined on $\mathbb{C} \backslash\{0\}$ and has the following two properties:

$$
\text { 1. } \frac{\partial}{\partial y}\left(-\frac{y}{x^{2}+y^{2}}\right)=\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right) \text {. }
$$

2. $\oint_{x^{2}+y^{2}=1}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y=2 \pi$.

Therefore, we can conclude that $-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$
*A. is closed.
B. is exact.
C. is both closed and exact.
D. is neither closed nor exact.
E. violates Green's theorem.

Question 2 A primitive of a continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ is
A. an antiderivative of f.
B. a function $F: \mathbb{C} \rightarrow \mathbb{C}$ such that $F^{\prime}(z)=f(z)$.
C. an exact differential of f.
*D. both \mathbf{A} and \mathbf{B}.
E. all of the above.

Question 3 Given a function $f(z)$ that is continuous on a domain D. If $F(z)$ is a primitive of $f(z)$ on D, then we can conclude that
A. $F^{\prime}(z)=f(z)$ on D.
B. $F\left(w_{2}\right)-F\left(w_{1}\right)=\int_{w_{1}}^{w_{2}} f(z) d z$ along any path in D from w_{1} to w_{2}.
C. The differential $d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y$ is equal to $F^{\prime}(z) d z$ and is exact on D.
*D. all of the above; they are equivalent.
E. none of the above; there is nothing primitive about complex functions.

Question 4 Recall that $\log (z)$ is the principle branch of the logarithm and that $\log ^{\prime}(z)=\frac{1}{z}$ at all points $z \in \mathbb{C}$ where this makes sense. Thus,
A. $\log (z)$ is a primitive for $\frac{1}{z}$ on the punctured plane $\mathbb{C} \backslash\{0\}$ since neither $\log (z)$ nor $\frac{1}{z}$ are defined at 0 .
B. $\log (z)$ is an antiderivative for $\frac{1}{z}$ on the slit plane $\mathbb{C} \backslash(-\infty, 0]$.
C. $\log (z)$ is a primitive for $\frac{1}{z}$ on the slit plane $\mathbb{C} \backslash(-\infty, 0]$.
*D. B and C; they are the same.
E. none of the above; slitting or puncturing planes is vandalism and is not allowed.

Question 5 Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth path with length L. We can conclude
A. $\left|\int_{\gamma} d z\right| \leq L$.
B. $\int_{\gamma}|d z|=L$.
C. $\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=L$.
D. B and \mathbf{C}; they are the same.
*E. all of the above.

