Math 120A August 22, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Recall that the differential $-\frac{y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$ is defined on $\mathbb{C} \setminus \{0\}$ and has the following two properties:

1.
$$\frac{\partial}{\partial y} \left(-\frac{y}{x^2 + y^2} \right) = \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right).$$

2.
$$\oint_{x^2 + y^2 = 1} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = 2\pi.$$

Therefore, we can conclude that $-\frac{y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy$

- *A. is closed.
 - B. is exact.
 - C. is both closed and exact.
 - D. is neither closed nor exact.
 - E. violates Green's theorem.

Question 2 A primitive of a continuous function $f : \mathbb{C} \to \mathbb{C}$ is

- A. an antiderivative of f.
- B. a function $F : \mathbb{C} \to \mathbb{C}$ such that F'(z) = f(z).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- C. an exact differential of f.
- *D. both **A** and **B**.
 - E. all of the above.

Question 3 Given a function f(z) that is continuous on a domain *D*. If F(z) is a primitive of f(z) on *D*, then we can conclude that

A.
$$F'(z) = f(z)$$
 on *D*.
B. $F(w_2) - F(w_1) = \int_{w_1}^{w_2} f(z) dz$ along any path in *D* from w_1 to w_2 .

C. The differential $dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy$ is equal to F'(z) dzand is exact on D.

- *D. all of the above; they are equivalent.
 - E. none of the above; there is nothing primitive about complex functions.

Question 4 Recall that Log(z) is the principle branch of the logarithm and that $\operatorname{Log}'(z)=rac{1}{z}$ at all points $z\in\mathbb{C}$ where this makes sense. Thus, A. Log(z) is a primitive for $\frac{1}{z}$ on the punctured plane $\mathbb{C} \setminus \{0\}$ since neither Log(z) nor $\frac{1}{z}$ are defined at 0. B. Log(z) is an antiderivative for $\frac{1}{z}$ on the slit plane $\mathbb{C} \setminus (-\infty, 0].$ C. Log(z) is a primitive for $\frac{1}{z}$ on the slit plane $\mathbb{C} \setminus (-\infty, 0]$.

- *D. **B** and **C**; they are the same.
 - E. none of the above; slitting or puncturing planes is vandalism and is not allowed.

Question 5 Let $\gamma : [a, b] \to \mathbb{C}$ be a piecewise smooth path with length *L*. We can conclude

(ロ)、(型)、(E)、(E)、 E) の(()

A.
$$\left| \int_{\gamma} dz \right| \leq L.$$

B. $\int_{\gamma} |dz| = L.$
C. $\int_{a}^{b} |\gamma'(t)| dt = L.$

D. **B** and **C**; they are the same.

*E. all of the above.