Math 120A
August 21, 2023

Question 1 A function is said to be smooth if it
A. is continuous.
B. is differentiable.
C. is continuously differentiable.
D. has derivatives of all orders (also called "infinitely differentiable").
*E. has as many derivatives as necessary for whatever is being asserted to be true.

Question 2 Recall that the differential $-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$ is defined on $\mathbb{C} \backslash\{0\}$ and has the following two properties:

$$
\text { 1. } \frac{\partial}{\partial y}\left(-\frac{y}{x^{2}+y^{2}}\right)=\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right) \text {. }
$$

2. $\oint_{x^{2}+y^{2}=1}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y=2 \pi$.

Therefore, we can conclude that $-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$
*A. is closed.
B. is exact.
C. is both closed and exact.
D. is neither closed nor exact.
E. violates Green's theorem.

Question 3 A continuous path $\gamma:[a, b] \rightarrow \mathbb{C}$ is simple if A. $\gamma(b)=\gamma(a)$.
B. $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ whenever $t_{1} \neq t_{2}$.
C. the image curve $\gamma([a, b])$ has no self-intersections.
*D. B and C.
E. all of the above.

Question 4 A continuous path $\gamma:[a, b] \rightarrow \mathbb{C}$ is closed if *A. $\gamma(b)=\gamma(a)$.
B. $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ whenever $t_{1} \neq t_{2}$.
C. the image curve $\gamma([a, b])$ has no self-intersections.
D. B and C.
E. all of the above.

Question 5 A set $D \subset \mathbb{C}$ is a domain if
A. for every $z \in D$ there is $\epsilon>0$ so that $\{w \in \mathbb{C}||w-z|<\epsilon\} \subset D$.
B. any two points in D can be connected by a continuous path consisting of a finite number of line segments.
C. for every pair of points $z_{1}, z_{2} \in D$, the line segment joining them is contained in D.
*D. A and B.
E. all of the above.

