Math 120A August 16, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 A function f(x, y) = (u(x, y), v(x, y)) is complex differentiable at $z_0 = (x_0, y_0)$ if and only if

A.
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at (x_0, y_0) .
B. $\frac{\partial}{\partial x} (u + iv) = \frac{1}{i} \frac{\partial}{\partial y} (u + iv)$ at (x_0, y_0) .
C. $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z)}{\Delta z}$ converges.
D. **A** and **C**.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

*E. **A**, **B**, and **C**.

Question 2 Define
$$\log_1 : \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$$
 by
 $\log_1(z) = \log |z| + i\theta(z)$ with $-\pi < \theta < \pi$.
Define $\log_2 : \mathbb{C} \setminus [0, \infty) \to \mathbb{C}$ by
 $\log_2(z) = \log |z| + i\phi(z)$ with $0 < \phi < 2\pi$.

Then,

A. $\log_1(z)$ and $\log_2(z)$ are analytic near z = -i. B. $\log_1(-i) = \log_2(-i)$. C. $\log'_1(-i) = \log'_2(-i)$. D. **A** and **B** *E. **A** and **C**

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Question 3 $f : \mathbb{R}^2 \to \mathbb{R}^2$ has real derivative $Df = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. We can conclude that

- A. f is real differentiable but not complex differentiable because f'(z) cannot be written as a matrix.
- B. *f* is complex differentiable because the partial derivatives of *f* satisfy the Cauchy-Riemann equations.
- C. f is complex differentiable and $|f'(z)|^2 = \det(Df) = 2$.
- *D. **B** and **C**
 - E. We can't conclude anything. Not enough information has been provided.

Question 4 A fractional linear transformation is a function $f: C^* \to C^*$ of the form $f(z) = \frac{\alpha z + \beta}{\gamma z + \delta}$ with $\alpha \delta - \beta \gamma \neq 0$.

The reason for requiring that $\alpha\delta - \beta\gamma \neq 0$ is to ensure that

- A. f is not constant
- B. f has an inverse
- C. f'(z) is never zero
- D. A and C; after all, they're the same
- *E. A, B, and C; they're all great reasons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question 5 Which of the following fractional linear transformations map $(-1, 0, 1) \mapsto (0, 1, \infty)$?

*A.
$$f(z) = \frac{z+1}{-z+1}$$

B. $f(z) = \frac{z+1}{2z}$
C. $f(z) = \frac{2z-1}{z-1}$
D. $f(z) = \frac{z+1}{2z+1}$

E. None of the above.