Math 120A
August 16, 2023

Question 1 A function $f(x, y)=(u(x, y), v(x, y))$ is complex differentiable at $z_{0}=\left(x_{0}, y_{0}\right)$ if and only if
A. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ at $\left(x_{0}, y_{0}\right)$.
B. $\frac{\partial}{\partial x}(u+i v)=\frac{1}{i} \frac{\partial}{\partial y}(u+i v)$ at $\left(x_{0}, y_{0}\right)$.
C. $\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f(z)}{\Delta z}$ converges.
D. A and C.
*E. A, B, and C.

Question 2 Define $\log _{1}: \mathbb{C} \backslash(-\infty, 0] \rightarrow \mathbb{C}$ by
$\log _{1}(z)=\log |z|+i \theta(z)$ with $-\pi<\theta<\pi$.
Define $\log _{2}: \mathbb{C} \backslash[0, \infty) \rightarrow \mathbb{C}$ by
$\log _{2}(z)=\log |z|+i \phi(z)$ with $0<\phi<2 \pi$.
Then,
A. $\log _{1}(z)$ and $\log _{2}(z)$ are analytic near $z=-i$.
B. $\log _{1}(-i)=\log _{2}(-i)$.
C. $\log _{1}^{\prime}(-i)=\log _{2}^{\prime}(-i)$.
D. A and B
*E. A and C

Question $3 f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has real derivative $\mathrm{Df}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$.
We can conclude that
A. f is real differentiable but not complex differentiable because $f^{\prime}(z)$ cannot be written as a matrix.
B. f is complex differentiable because the partial derivatives of f satisfy the Cauchy-Riemann equations.
C. f is complex differentiable and $\left|f^{\prime}(z)\right|^{2}=\operatorname{det}(D f)=2$.
*D. B and C
E. We can't conclude anything. Not enough information has been provided.

Question 4 A fractional linear transformation is a function $f: C^{*} \rightarrow C^{*}$ of the form $f(z)=\frac{\alpha z+\beta}{\gamma z+\delta}$ with $\alpha \delta-\beta \gamma \neq 0$.
The reason for requiring that $\alpha \delta-\beta \gamma \neq 0$ is to ensure that
A. f is not constant
B. f has an inverse
C. $f^{\prime}(z)$ is never zero
D. A and C; after all, they're the same
*E. A, B, and \mathbf{C}; they're all great reasons

Question 5 Which of the following fractional linear transformations map $(-1,0,1) \mapsto(0,1, \infty)$?
*A. $f(z)=\frac{z+1}{-z+1}$
B. $f(z)=\frac{z+1}{2 z}$
C. $f(z)=\frac{2 z-1}{z-1}$
D. $f(z)=\frac{z+1}{2 z+1}$
E. None of the above.

