Math 120A August 14, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 The power function z^{α} is single-valued

- A. for every real number α .
- B. for every rational number α .
- *C. for every integer α .
 - D. All of the above; after all, every rational number is a real number and every integer is a rational number.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

E. None of the above; z^{α} is always multiple-valued.

Question 2 Let $f(z) = e^z$ and $g(z) = z^{\frac{1}{4}}$. A. f(z) is single-valued, but g(z) is multiple-valued. B. $f\left(\frac{1}{4}\right) = g(e)$ since they are both equal to $e^{\frac{1}{4}}$. C. $g(e) = \left\{e^{\frac{1}{4}+i\frac{\pi}{2}k}, k = 0, 1, 2, 3\right\}$. D. **B** and **C** ***E**. **A** and **C**

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Question 3 Let f(z) and g(z) be analytic for all $z \in \mathbb{C}$. Then,

A.
$$\frac{d}{dz} [f(z) + g(z)] = f'(z) + g'(z) \text{ (sum rule)}$$

B.
$$\frac{d}{dz} [f(z)g(z)] = f'(z)g(z) + f(z)g'(z) \text{ (product rule)}$$

C.
$$\frac{d}{dz} f(g(z)) = f'(g(z))g'(z) \text{ (chain rule)}$$

- *D. All of the above; these formulas work exactly the same as in real-variable calculus.
 - E. None of the above; the formulas only work in real-variable calculus where everything is single-valued.

Question 4 The hyperbolic functions $\cosh(z) = \frac{e^z + e^{-z}}{2}$ and $\sinh(z) = \frac{e^z - e^{-z}}{2}$ are

- *A. periodic with period $2\pi i$, just like the complex exponential function e^z .
 - B. periodic with period 2π , just like the trigonometric functions $\cos(z)$ and $\sin(z)$.
 - C. not periodic; after all, they're hyperbolic.
 - D. never zero, just like the complex exponential function e^z .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

E. C and D

Question 5 For every complex number *z*, the complex function $\gamma(z) = \bar{z}$ has the property that

A.
$$|\gamma(z)| = |z|$$

B. $\gamma(z)$ is continuous at z.

C.
$$\gamma(z)$$
 is differentiable at z.

- *D. \mathbf{A} and \mathbf{B}
 - E. A, B and C