Math 120A
August 14, 2023

Question 1 The power function z^{α} is single-valued
A. for every real number α.
B. for every rational number α.
${ }^{*} C$. for every integer α.
D. All of the above; after all, every rational number is a real number and every integer is a rational number.
E. None of the above; z^{α} is always multiple-valued.

Question 2 Let $f(z)=e^{z}$ and $g(z)=z^{\frac{1}{4}}$.
A. $f(z)$ is single-valued, but $g(z)$ is multiple-valued.
B. $f\left(\frac{1}{4}\right)=g(e)$ since they are both equal to $e^{\frac{1}{4}}$.
C. $g(e)=\left\{e^{\frac{1}{4}+i \frac{\pi}{2} k}, k=0,1,2,3\right\}$.
D. B and C
*E. A and C

Question 3 Let $f(z)$ and $g(z)$ be analytic for all $z \in \mathbb{C}$. Then,
A. $\frac{d}{d z}[f(z)+g(z)]=f^{\prime}(z)+g^{\prime}(z) \quad$ (sum rule)
B. $\frac{d}{d z}[f(z) g(z)]=f^{\prime}(z) g(z)+f(z) g^{\prime}(z) \quad$ (product rule)
C. $\frac{d}{d z} f(g(z))=f^{\prime}(g(z)) g^{\prime}(z) \quad$ (chain rule)
*D. All of the above; these formulas work exactly the same as in real-variable calculus.
E. None of the above; the formulas only work in real-variable calculus where everything is single-valued.

Question 4 The hyperbolic functions $\cosh (z)=\frac{e^{z}+e^{-z}}{2}$ and $\sinh (z)=\frac{e^{z}-e^{-z}}{2}$ are
*A. periodic with period $2 \pi i$, just like the complex exponential function e^{z}.
B. periodic with period 2π, just like the trigonometric functions $\cos (z)$ and $\sin (z)$.
C. not periodic; after all, they're hyperbolic.
D. never zero, just like the complex exponential function e^{z}.
E. C and D

Question 5 For every complex number z, the complex function $\gamma(z)=\bar{z}$ has the property that

$$
\text { A. }|\gamma(z)|=|z|
$$

B. $\gamma(z)$ is continuous at z.
C. $\gamma(z)$ is differentiable at z.
*D. A and B
E. A, B and C

