Math 20E Homework Assignment 8 Due Friday, December 8, 2023 (not graded)

1. Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and set $r=\|\mathbf{r}\|=\sqrt{x^{2}+y^{2}+z^{2}}$. Show that for a symmetric elementary region W with outward-oriented C^{1} boundary surface ∂W,

$$
\iiint_{W} \frac{1}{r^{2}} d V=\iint_{\partial W} \frac{\mathbf{r}}{r^{2}} \cdot \mathbf{n} d S
$$

Note: This is a simple application of Gauss's divergence theorem if $(0,0,0) \notin W$. Be sure to carefully show the equation still holds when $(0,0,0) \in W$.
2. Let $\mathbf{F}(x, y)=\left(x y, y^{2}\right)$.
(a) Let \mathbf{c} be the path $y=2 x^{2}$ in \mathbb{R}^{2} joining $(0,0)$ and (1,2). Evaluate $\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}$.
(b) Does the integral in part (a) depend on the choice of path joining $(0,0)$ to $(1,2)$?
3. Let $\mathbf{F}(x, y, z)=\left(e^{x} \sin (y)\right) \mathbf{i}+\left(e^{x} \cos (y)\right) \mathbf{j}+z^{2} \mathbf{k}$. Evaluate the integral $\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}$, where \mathbf{c} is the path given by $\mathbf{c}(t)=\left(\sqrt{t}, t^{3}, \exp (\sqrt{t})\right)$, with $0 \leq t \leq 1$.
4. For each of the following vector fields \mathbf{F}, determine if it is a gradient field. If it is, find a function f such that $\nabla f=\mathbf{F}$.
(a) $\mathbf{F}(x, y)=\left(2 x+y^{2}-y \sin (x), 2 x y+\cos (x)\right)$
(b) $\mathbf{F}(x, y, z)=\left(6 x^{2} z^{2}, 5 x^{2} y^{2}, 4 y^{2} z^{2}\right)$
(c) $\mathbf{F}(x, y)=\left(y^{3}+1,3 x y^{2}+1\right)$
(d) $\mathbf{F}(x, y)=\left(2 x \cos (y),-x^{2} \sin (y)\right)$
5. Evaluate $\int_{\mathbf{c}} 2 x y z d x+x^{2} z d y+x^{2} 6 d z$ over the path $\mathbf{c}(t)=\left(t^{2}, \sin \left(\frac{\pi}{4} t\right), \exp \left(t^{2}-2 t\right)\right)$ with $0 \leq t \leq 2$.
6. Evaluate $\int_{\mathcal{C}} \sin (x) d x+z \cos (y) d y+\sin (y) d z$, where \mathcal{C} is the ellipse defined by $4 x^{2}+9 y^{2}=36$ and oriented clockwise.

