Math 20E Homework Assignment 8 Due Friday, December 8, 2023 (not graded)

1. Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and set $r = \|\mathbf{r}\| = \sqrt{x^2 + y^2 + z^2}$. Show that for a symmetric elementary region W with outward-oriented C^1 boundary surface ∂W ,

$$\iiint_W \frac{1}{r^2} \, dV = \iint_{\partial W} \frac{\mathbf{r}}{r^2} \cdot \mathbf{n} \, dS.$$

Note: This is a simple application of Gauss's divergence theorem if $(0,0,0) \notin W$. Be sure to carefully show the equation still holds when $(0,0,0) \in W$.

- 2. Let $\mathbf{F}(x, y) = (xy, y^2)$.
 - (a) Let **c** be the path $y = 2x^2$ in \mathbb{R}^2 joining (0,0) and (1,2). Evaluate $\int \mathbf{F} \cdot d\mathbf{s}$.
 - (b) Does the integral in part (a) depend on the choice of path joining (0,0) to (1,2)?
- 3. Let $\mathbf{F}(x, y, z) = (e^x \sin(y))\mathbf{i} + (e^x \cos(y))\mathbf{j} + z^2\mathbf{k}$. Evaluate the integral $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$, where \mathbf{c} is the path given by $\mathbf{c}(t) = (\sqrt{t}, t^3, \exp(\sqrt{t}))$, with $0 \le t \le 1$.
- 4. For each of the following vector fields **F**, determine if it is a gradient field. If it is, find a function f such that $\nabla f = \mathbf{F}$.
 - (a) $\mathbf{F}(x,y) = (2x + y^2 y\sin(x), 2xy + \cos(x))$
 - (b) $\mathbf{F}(x, y, z) = (6x^2z^2, 5x^2y^2, 4y^2z^2)$
 - (c) $\mathbf{F}(x,y) = (y^3 + 1, 3xy^2 + 1)$
 - (d) $\mathbf{F}(x, y) = (2x\cos(y), -x^2\sin(y))$
- 5. Evaluate $\int_{\mathbf{c}} 2xyz \, dx + x^2z \, dy + x^26 \, dz$ over the path $\mathbf{c}(t) = (t^2, \sin(\frac{\pi}{4}t), \exp(t^2 2t))$ with $0 \le t \le 2$.
- 6. Evaluate $\int_{\mathcal{C}} \sin(x) dx + z \cos(y) dy + \sin(y) dz$, where \mathcal{C} is the ellipse defined by $4x^2 + 9y^2 = 36$ and oriented *clockwise*.