1. Let $\mathbf{r}(x, y, z)=(x, y, z)$ and $r(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}=\|\mathbf{r}\|$. Verify the following identities.
(a) $\nabla\left(\frac{1}{r}\right)=-\frac{\mathbf{r}}{r^{3}}$.
(b) $\nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right)=0$.
(c) $\boldsymbol{\nabla} \times \mathbf{r}=\mathbf{0}$.
2. Let $C$ be the closed, piecewise smooth curve formed by traveling in straight lines between the points $(0,0,0),(2,1,5),(1,1,3)$, and back to $(0,0,0)$ in that order. Use Stokes' theorem to evaluate the line integral

$$
\int_{C}(x y z) d x+(x y) d y+(x) d z
$$

3. Evaluate the surface integral $\iint_{S}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}$, where $S$ is the portion the surface of a sphere defined by $x^{2}+y^{2}+z^{2}=1$ and $x+y+z \geq 1$, and where $\mathbf{F}=\mathbf{r} \times(\mathbf{i}+\mathbf{j}+\mathbf{k})$, with $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
4. Let $\mathbf{F}=x^{2} \mathbf{i}+(2 x y+x) \mathbf{j}+z \mathbf{k}$. Let $C$ be the circle $x^{2}+y^{2}=1$ and $S$ the disk $x^{2}+y^{2} \leq 1$ within the plane $z=0$.
(a) Determine the flux of $\mathbf{F}$ out of $S$.
(b) Determine the circulation of $\mathbf{F}$ around $C$.
(c) Find the flux of $\boldsymbol{\nabla} \times \mathbf{F}$. Verify Stokes' theorem directly in this case.
5. Let $\mathbf{F}=(0,-z, 1)$. Let $S$ be the spherical cap $x^{2}+y^{2}+z^{2}=1$, where $z \geq \frac{1}{2}$.
(a) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ directly as a surface integral.
(b) Verify that $\mathbf{F}=\boldsymbol{\nabla} \times \mathbf{A}$, where $\mathbf{A}=(0, x, x z)$.
(c) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ using Stokes' theorem.
6. Let $\mathbf{F}=\left(y^{2}, x^{2}, z^{2}\right)$. Verify that $\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}$, for any two simple closed curves $\mathcal{C}_{1}, \mathcal{C}_{2}$ going around a cylinder whose central axis is the $z$-axis; that is, any cylinder whose equation is of the form $x^{2}+y^{2}=R^{2}$.
7. Use the divergence theorem to calculate the flux of $\mathbf{F}=(x-y) \mathbf{i}+(y-z) \mathbf{j}+(z-x) \mathbf{k}$ out of the unit sphere $x^{2}+y^{2}+z^{2}=1$.
8. Let $S$ be the boundary surface of a solid region $W$. Show that

$$
\iint_{S} \mathbf{r} \cdot \mathbf{n} d S=3 \text { volume }(W) .
$$

Explain this result geometrically.
9. Let $W$ be the pyramid with top vertex $(0,0,1)$, and base vertices at $(0,0,0),(1,0,0),(0,1,0)$, and ( $1,1,0$ ). Let $S$ be the closed boundary surface of $W$, oriented outward from $W$. Let $\mathbf{F}(x, y, z)=\left(x^{2} y, 3 y^{2} z, 9 z^{2} x\right)$. Use Gauss' theorem to compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
(page 2 of 2)
10. Let $\mathbf{F}(x, y, z)=(x+y, z, z-x)$ and let $\mathcal{S}$ be the boundary surface of the solid region between the paraboloid $z=9-x^{2}-y^{2}$ and the $x y$-plane. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.

