Math 20E Homework Assignment 6
Due Tuesday, November 21, 2022

1. Given any two positive constants c and d. Compute the area enclosed by the ellipse $\left(\frac{x}{c}\right)^{2}+\left(\frac{y}{d}\right)^{2}=1$.
2. Find the area of the region between the x-axis and the cycloid parametrized by $\mathbf{r}(t)=(t-\sin (t), 1-\cos (t))$ with $0 \leq t \leq 2 \pi$.
3. The curve in \mathbb{R}^{2} satisfying the equation $x^{3}+y^{3}=3 x y$ is called the folium of Descartes.
(a) By setting $y=t x$, verify that $\mathbf{c}: \mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}^{2}$ with $\mathbf{c}(t)=\left(\frac{3 t}{1+t^{3}}, \frac{3 t^{2}}{1+t^{3}}\right)$ parametrizes the folium of Descartes. (Note: $\mathbb{R} \backslash\{-1\}=(-\infty,-1) \cup(-1, \infty)$.)
(b) Use the parametrization above to determine the area enclosed by the loop of the folium. (Hint: The resulting integral should be an improper integral with $0 \leq t<\infty$.)
4. Use Green's theorem to evaluate the line integral of $\mathbf{F}=\left(e^{x+y}, e^{x-y}\right)$ along the clockwiseoriented curve consisting of the line segments joining the points $(0,0),(2,2),(4,2),(2,0)$, and back to $(0,0)$ (and in that order). Be sure to note the orientation.
(Hint: You might find the change of variables $u=x-y, v=y$ helpful when evaluating the double integral.)
5. Let $P(x, y)=\frac{-y}{x^{2}+y^{2}}$ and $Q(x, y)=\frac{x}{x^{2}+y^{2}}$, and let D be the unit disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.
(a) Evaluate the area integral $\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$ over the unit disk D.
(b) Evaluate the line integral $\int_{\partial D} P d x+Q d y$ around ∂D, the unit circle with positive orientation.
(c) Briefly explain why Green's theorem failed.
