Math 20E Homework Assignment 5
Due Tuesday, November 14, 2022

1. A metallic surface $S$ is in the shape of a hemisphere $z=\sqrt{R^{2}-x^{2}-y^{2}}$, where $(x, y)$ satisfies $x^{2}+y^{2} \leq R^{2}$. The mass density (mass per unit area) at $(x, y, z) \in S$ is given by $m(x, y, z)=x^{2}+y^{2}$. Find the total mass of $S$.
2. Find the average value of $f(x, y, z)=x+z^{2}$ on the truncated cone $z^{2}=x^{2}+y^{2}$, with $3 \leq z \leq 4$.
3. Evaluate the integral $\iint_{S}(1-z) d S$, where $S$ is the graph of $z=1-x^{2}-y^{2}$, with $x^{2}+y^{2} \leq 1$.
4. Find the mass of a spherical surface $S$ of radius $R$ with the property that at each point $(x, y, z) \in S$ the mass density is equal to a constant $\rho$ times the distance between $(x, y, z)$ and some fixed point $\left(x_{0}, y_{0}, z_{0}\right) \in S$.
5. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, with $\mathbf{F}(x, y, z)=(x, y, z)$, and $S$ the part of the plane $x+y+z=1$ with $x \geq 0, y \geq 0$, and $z \geq 0$.
6. Let $r=\sqrt{x^{2}+y^{2}+z^{2}}$ and let $\mathbf{e}_{r}=\left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right)$ be the unit radial vector field. Compute the integral of $\mathbf{F}=e^{-r} \mathbf{e}_{r}$ over the upper hemisphere $x^{2}+y^{2}+z^{2}=9$ with outward-pointing normal.
7. Let $\mathcal{S}$ be the ellipsoid $\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{3}\right)^{2}+\left(\frac{z}{2}\right)^{2}=1$. Compute the flux of $\mathbf{F}=(0,0, z)$ over the portion of $\mathcal{S}$ where $x \leq 0, y \leq 0, z \leq 0$ with upward-pointing normal.
8. Let $\mathbf{v}=(0,0, z)$ be the velocity field (in meters per second) in $\mathbb{R}^{3}$. Compute the volume flow rate (in cubic meters per second) through the upper upper hemisphere $(z \geq 0)$ of the unit sphere $x^{2}+y^{2}+z^{2}=1$.
9. A net with surface described by $y=0$ with $x^{2}+z^{2} \leq 1$ is dipped into a river in which the water flows according to the velocity field $\mathbf{v}=\left(x-y, z+y+4, z^{2}\right)$. Determine the volume flow rate across the net.
10. Calculate the flux of the vector field $\mathbf{E}(x, y, z)=(0,0, x)$ through the part of the ellipsoid

$$
4 x^{2}+9 y^{2}+z^{2}=36
$$

where $z \geq 3, x \geq 0$, and $y \geq 0$.
(Hint: Use the parametrization $\Psi(r, \theta)=\left(3 r \cos (\theta), 2 r \sin (\theta), 6 \sqrt{1-r^{2}}\right)$ with an appropriate domain.)

