Math 20E Homework Assignment 5 Due Tuesday, November 14, 2022

- 1. A metallic surface S is in the shape of a hemisphere $z = \sqrt{R^2 x^2 y^2}$, where (x, y) satisfies $x^2 + y^2 \leq R^2$. The mass density (mass per unit area) at $(x, y, z) \in S$ is given by $m(x, y, z) = x^2 + y^2$. Find the total mass of S.
- 2. Find the average value of $f(x, y, z) = x + z^2$ on the truncated cone $z^2 = x^2 + y^2$, with $3 \le z \le 4$.
- 3. Evaluate the integral $\iint_{S} (1-z) dS$, where S is the graph of $z = 1 x^2 y^2$, with $x^2 + y^2 \le 1$.
- 4. Find the mass of a spherical surface S of radius R with the property that at each point $(x, y, z) \in S$ the mass density is equal to a constant ρ times the distance between (x, y, z) and some fixed point $(x_0, y_0, z_0) \in S$.
- 5. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, with $\mathbf{F}(x, y, z) = (x, y, z)$, and S the part of the plane x + y + z = 1 with $x \ge 0$, $y \ge 0$, and $z \ge 0$.
- 6. Let $r = \sqrt{x^2 + y^2 + z^2}$ and let $\mathbf{e}_r = \left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right)$ be the unit radial vector field. Compute the integral of $\mathbf{F} = e^{-r} \mathbf{e}_r$ over the upper hemisphere $x^2 + y^2 + z^2 = 9$ with outward-pointing normal.
- 7. Let \mathcal{S} be the ellipsoid $\left(\frac{x}{4}\right)^2 + \left(\frac{y}{3}\right)^2 + \left(\frac{z}{2}\right)^2 = 1$. Compute the flux of $\mathbf{F} = (0, 0, z)$ over the portion of \mathcal{S} where $x \le 0, y \le 0, z \le 0$ with upward-pointing normal.
- 8. Let $\mathbf{v} = (0, 0, z)$ be the velocity field (in meters per second) in \mathbb{R}^3 . Compute the volume flow rate (in cubic meters per second) through the upper upper hemisphere $(z \ge 0)$ of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 9. A net with surface described by y = 0 with $x^2 + z^2 \le 1$ is dipped into a river in which the water flows according to the velocity field $\mathbf{v} = (x y, z + y + 4, z^2)$. Determine the volume flow rate across the net.
- 10. Calculate the flux of the vector field $\mathbf{E}(x, y, z) = (0, 0, x)$ through the part of the ellipsoid

$$4x^2 + 9y^2 + z^2 = 36$$

where $z \ge 3, x \ge 0$, and $y \ge 0$.

(Hint: Use the parametrization $\Psi(r,\theta) = \left(3r\cos(\theta), 2r\sin(\theta), 6\sqrt{1-r^2}\right)$ with an appropriate domain.)