Math 20E Homework Assignment 4
Due Tuesday, November 7, 2023

1. Evaluate $\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}$, where $\mathbf{F}(x, y)=\left(-x y, x^{2}\right)$ and \mathbf{c} is the path along the unit circle $x^{2}+y^{2}=1$ beginning at $(1,0)$ and ending at $(0,1)$.
2. Evaluate the line integral $\int_{\mathbf{c}} y z d x+x z d y+x y d z$, where \mathbf{c} consists of the straight-line segments joining $(1,0,0)$ to $(0,1,0)$ to $(0,0,1)$.
3. Evaluate the line integral $\int_{C}\left(y^{2}+2 x z\right) d x+\left(2 x y+z^{2}\right) d y+\left(2 y z+x^{2}\right) d z$, where C is an oriented simple curve from $(1,1,1)$ to $(0,2,3)$.
4. Let S be the surface parametrized by

$$
x=\cos (u) \sin (v) \quad y=\sin (u) \sin (v) \quad z=\cos (v)
$$

for $u \in[0,2 \pi]$ and $v \in[0, \pi]$.
(a) Find an expression for a unit vector normal to S at the image of a point $(u, v) \in[0,2 \pi] \times[0, \pi]$.
(b) Identify the surface S.
5. Let S be the surface determined by the equation $x^{3}+3 x y+z^{2}=2$, with $z \geq 0$.
(a) Find a parametrization $\Phi: D \subseteq \mathbb{R}^{2} \rightarrow S \subseteq \mathbb{R}^{3}$.
(b) Find an equation for the tangent plane to S at the point $(1,1 / 3,0)$.
6. The image S of the parametrization

$$
\begin{aligned}
\Phi & :[-\pi, \pi] \times[0, \pi] \rightarrow S \subseteq \mathbb{R}^{3} \\
\Phi(u, v) & =(a \cos (u) \sin (v), b \sin (u) \sin (v), c \cos (v))
\end{aligned}
$$

is an ellipsoid.
(a) Find an equation for the ellipsoid S by evaluating the expression $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}$.
(b) Show that Φ is not regular when $v=0$ or $v=\pi$.
(c) Show that the image surface S is regular at all points of S.
7. Find the area of the unit sphere S parametrized by

$$
\begin{aligned}
\Phi & :[0,2 \pi] \times[0, \pi] \rightarrow S \subseteq \mathbb{R}^{3} \\
\Phi(\theta, \phi) & =(\cos (\theta) \sin (\phi), \sin (\theta) \sin (\phi), \cos (\phi))
\end{aligned}
$$

8. Find the area of the portion of the unit sphere that is inside the mouth of the cone $z \geq \sqrt{x^{2}+y^{2}}$.
9. The cylinder $x^{2}+y^{2}=x$ divides the unit sphere S into two regions S_{1} and S_{2}, where S_{1} is outside the cylinder and S_{2} is inside the cylinder.
Find the ratio $A\left(S_{1}\right) / A\left(S_{2}\right)$ of the areas of S_{1} and S_{2}.
10. Find the area of the surface S defined by $x+y+z=1$, with $x^{2}+3 y^{2} \leq 1$.
