1. Let D be the unit disk: $x^{2}+y^{2} \leq 1$. Evaluate $\iint_{D} \exp \left(x^{2}+y^{2}\right) d x d y$.
2. Evaluate $\iint_{D} x^{2} d x d y$ where D is determined by the two conditions $0 \leq x \leq y$ and $x^{2}+y^{2} \leq 1$.
3. Evaluate $\iiint_{W} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z$, where W is the solid bounded by the two spheres $x^{2}+y^{2}+z^{2}=a^{2}$ and $x^{2}+y^{2}+z^{2}=b^{2}$ with $0<a<b$.
4. Evaluate $\iint_{R}(x+y) d x d y$, where R is the rectangle in the $x y$-plane with vertices at $(0,1),(1,0),(3,4),(4,3)$.
5. Show that the path $\mathbf{c}(t)=\left(\sin (t), \cos (t), e^{t}\right)$ is a flow line of the vector field $\mathbf{F}(x, y, z)=(y,-x, z)$.
6. Let $\mathbf{F}(x, y, z)=(y z, x z, x y)$. Find a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.
7. Evaluate the path integral $\int_{\mathbf{c}} f(x, y, z) d s$ with $f(x, y, z)=x+y+z$ and $\mathbf{c}(t)=(\sin (t), \cos (t), t)$ for $t \in[0,2 \pi]$.
8. Find the average y coordinate of the points on the semicircle parametrized by $\mathbf{c}:[0, \pi] \rightarrow \mathbb{R}^{3}$ given by $\mathbf{c}(t)=(0, a \sin (t), a \cos (t))$ with $a>0$.
9. Evaluate $\int_{\mathbf{c}} f d s$, where $f(x, y, z)=z$ and $\mathbf{c}(t)=(t \cos (t), t \sin (t), t)$ for $0 \leq t \leq t_{0}$.
10. Find the average z coordinate on the path $\mathbf{c}(t)=(t \cos (t), t \sin (t), t)$ for $0 \leq t \leq t_{0}$.
