Math 20E Homework Assignment 2
Due 11:00pm Tuesday, October 17, 2023

1. Change the order integration and evaluate:

$$
\int_{y=0}^{1} \int_{x=y}^{1} \sin \left(x^{2}\right) d x d y .
$$

2. Change the order integration and evaluate:

$$
\int_{y=0}^{1} \int_{x=\sqrt{y}}^{1} e^{x^{3}} d x d y
$$

3. Let $D=[-1,1] \times[-1,2]$. Use the mean value inequality to show that

$$
1 \leq \iint_{D} \frac{1}{x^{2}+y^{2}+1} d x d y \leq 6
$$

4. Compute $\iint_{D} f(x, y) d A$, where $f(x, y)=y^{2} \sqrt{x}$ and D is the set of (x, y) such that $x>0, y>x^{2}$, and $y<10-x^{2}$.
5. Perform the indicated integration over the given box:

$$
\iiint_{B} z e^{x+y} d x d y d z ; \quad B=[0,1] \times[0,1] \times[0,1] .
$$

6. Find the volume of the solid bounded by $x^{2}+2 y^{2}=2, \quad z=0$, and $x+y+2 z=2$.
7. Evaluate the integral $\iiint_{W} z d x d y d z$; where W is the region bounded by $x=0, y=0$, $z=0, z=1$, and the cylinder $x^{2}+y^{2}=1$, with $x \geq 0, y \geq 0$.
8. Let $S^{*}=(0,1] \times[0,2 \pi)$ and define $T(r, \theta)=(r \cos (\theta), r \sin (\theta))$.
(a) Determine the image set $S=T\left(S^{*}\right)$.
(b) Show that T is one-to-one on S^{*}.
9. Let D^{*} be the parallelogram with vertices at $(-1,3),(0,0),(2,-1)$, and $(1,2)$. Let D be the rectangle $D=[0,1] \times[0,1]$. Find a T such that D is the image set of D^{*} under T; that is, $D=T\left(D^{*}\right)$.
10. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the spherical coordinate mapping defined by $(\rho, \phi, \theta) \mapsto(x, y, z)$, where

$$
x=\rho \sin (\phi) \cos (\theta), \quad y=\rho \sin (\phi) \sin (\theta), \quad z=\rho \cos (\phi) .
$$

Let D^{*} be the set of points (ρ, ϕ, θ) such that $\rho \in[0,1], \quad \phi \in[0, \pi], \quad \theta \in[0,2 \pi]$.
(a) Find $D=T\left(D^{*}\right)$.
(b) Is T one-to-one? If not, can we eliminate a subset $S \subseteq D^{*}$ so that T is one-to-one on the remainder $D^{*} \backslash S=\left\{(x, y, z) \in D^{*} \mid(x, y, z) \notin S\right\}$?

