Math 20E Homework Assignment 2 Due 11:00pm Tuesday, October 17, 2023

1. Change the order integration and evaluate:

$$\int_{y=0}^{1} \int_{x=y}^{1} \sin(x^2) \, dx \, dy.$$

2. Change the order integration and evaluate:

$$\int_{y=0}^{1} \int_{x=\sqrt{y}}^{1} e^{x^3} \, dx \, dy.$$

3. Let $D = [-1, 1] \times [-1, 2]$. Use the mean value inequality to show that

$$1 \le \iint_D \frac{1}{x^2 + y^2 + 1} \, dx \, dy \le 6.$$

- 4. Compute $\iint_D f(x,y) dA$, where $f(x,y) = y^2 \sqrt{x}$ and D is the set of (x,y) such that x > 0, $y > x^2$, and $y < 10 x^2$.
- 5. Perform the indicated integration over the given box:

$$\iiint_B z \, e^{x+y} \, dx \, dy \, dz; \quad B = [0,1] \times [0,1] \times [0,1].$$

- 6. Find the volume of the solid bounded by $x^2 + 2y^2 = 2$, z = 0, and x + y + 2z = 2.
- 7. Evaluate the integral $\iiint_W z \, dx \, dy \, dz$; where W is the region bounded by x = 0, y = 0, z = 0, z = 1, and the cylinder $x^2 + y^2 = 1$, with $x \ge 0$, $y \ge 0$.
- 8. Let $S^* = (0,1] \times [0,2\pi)$ and define $T(r,\theta) = (r\cos(\theta), \ r\sin(\theta))$.
 - (a) Determine the image set $S = T(S^*)$.
 - (b) Show that T is one-to-one on S^* .
- 9. Let D^* be the parallelogram with vertices at (-1,3), (0,0), (2,-1), and (1,2). Let D be the rectangle $D = [0,1] \times [0,1]$. Find a T such that D is the image set of D^* under T; that is, $D = T(D^*)$.
- 10. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the spherical coordinate mapping defined by $(\rho, \phi, \theta) \mapsto (x, y, z)$, where

$$x = \rho \sin(\phi) \cos(\theta), \qquad y = \rho \sin(\phi) \sin(\theta), \qquad z = \rho \cos(\phi).$$

Let D^* be the set of points (ρ, ϕ, θ) such that $\rho \in [0, 1], \phi \in [0, \pi], \theta \in [0, 2\pi].$

- (a) Find $D = T(D^*)$.
- (b) Is T one-to-one? If not, can we eliminate a subset $S \subseteq D^*$ so that T is one-to-one on the remainder $D^* \setminus S = \{(x, y, z) \in D^* \mid (x, y, z) \notin S\}$?