Math 20E Homework Assignment 1

Due 11:00pm Tuesday, October 10, 2023

1. Find an equation for the tangent plane to $f(x, y, z)=\frac{x y z}{x^{2}+y^{2}+z^{2}}$ at $\left(x_{0}, y_{0}, z_{0}\right)=(1,0,1)$.
2. Compute the matrix of partial derivatives of $f(x, y, z)=(x+y, x-y, x y)$.
3. Let $w=x^{2}+y^{2}+z^{2}, x=u v, y=u \cos (v)$, and $z=u \sin (v)$. Use the chain rule to find $\frac{\partial w}{\partial u}$ when $(u, v)=(1,0)$.
4. Let $g(u, v)=\left(e^{u}, u+\sin (v)\right)$ and $f(x, y, z)=(x y, y z)$. Compute $\mathbf{D}(g \circ f)(0,1,0)$ using the chain rule.
5. Evaluate the iterated integral $\int_{1}^{3} \int_{1}^{2} \frac{x y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} d x d y$.
6. Evaluate the double integral $\iint_{R}\left(x^{2} y^{2}+x\right) d y d x$, where $R=[0,2] \times[-1,0]$.
7. Compute the volume of the region over the rectangle $[0,1] \times[0,1]$ and under the graph $z=x y$.
8. Compute the volume of the solid bounded by the $x z$ plane, the $y z$ plane, the $x y$ plane, the planes $x=1$ and $y=1$, and the surface $z=x^{2}+y^{4}$.
9. Evaluate the double integral $\iint_{D} x y d A$, where D is the triangular region whose vertices are $(0,0),(0,2),(2,0)$.
10. Evaluate $\iint_{D} y d A$, where D is the set of points (x, y) such that $0 \leq \frac{2 x}{\pi} \leq y \leq \sin (x)$.
