A Note on Differentiability

1. Real-Differentiability

Recall that in one-variable calculus, we define differentiability as follows:
Definition 1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x_{0} if $\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=m$ for some number $m \in \mathbb{R}$. When this occurs, we define $f^{\prime}\left(x_{0}\right):=m$ and call $f^{\prime}\left(x_{0}\right)$ the derivative of f at x_{0}.

Unfortunately, this definition does not generalize to functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. However, the following equivalent definition does generalize to functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Definition 2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x_{0} if

$$
\lim _{|\Delta x| \rightarrow 0} \frac{\left|f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)-m \Delta x\right|}{|\Delta x|}=0 \quad \text { for some number } m \in \mathbb{R} \text {. }
$$

When this occurs, we define $f^{\prime}\left(x_{0}\right):=m$ and call $f^{\prime}\left(x_{0}\right)$ the derivative of f at x_{0}.

The reason the above two definitions are equivalent can be seen by the following computation:

$$
\begin{aligned}
\lim _{|\Delta x| \rightarrow 0} \frac{\left|f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)-m \Delta x\right|}{|\Delta x|} & =\lim _{|\Delta x| \rightarrow 0}\left|\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)-m \Delta x}{\Delta x}\right| \\
& =\lim _{|\Delta x| \rightarrow 0}\left|\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}-m\right|
\end{aligned}
$$

The second definition generalizes naturally to functions of the form $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
Definition 3. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(u(x, y), v(x, y))$ is differentiable at $\left(x_{0}, y_{0}\right)$ if there is a 2×2 matrix M such that
$\lim _{|(\Delta x, \Delta y)| \rightarrow 0} \frac{\left|\left(u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right), v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right)-M\binom{\Delta x}{\Delta y}\right|}{|(\Delta x, \Delta y)|}=0$.
When this occurs, we define $\operatorname{Df}\left(x_{0}, y_{0}\right):=M$ and call $D f\left(x_{0}, y_{0}\right)$ the derivative of f at $\left(x_{0}, y_{0}\right)$. When the point $\left(x_{0}, y_{0}\right)$ is clear from the context, we often simply write Df for the derivative of f.

We used the following notational conventions in the above definition.

1. $|(\Delta x, \Delta y)|:=\sqrt{\Delta x^{2}+\Delta y^{2}}$.
2. $\binom{\Delta x}{\Delta y}=(\Delta x, \Delta y)$

- ordered pairs may be written as either columns or rows.

3. $M\binom{\Delta x}{\Delta y}=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)\binom{\Delta x}{\Delta y}=\binom{m_{11} \Delta x+m_{12} \Delta y}{m_{21} \Delta x+m_{22} \Delta y}=\left(m_{11} \Delta x+m_{12} \Delta y, m_{21} \Delta x+m_{22} \Delta y\right)$.

- ordered pairs are written as columns in order to perform matrix multiplication.

Theorem 1. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(u(x, y), v(x, y))$ has continuous partial derivatives, then f is differentiable, and the derivative Df is the matrix of partial derivatives, also called J_{f}, the Jacobian matrix of f.

$$
D f=J_{f}=\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right) .
$$

When $D f\left(x_{0}, y_{0}\right)=J_{f}\left(x_{0}, y_{0}\right)$ is the derivative of f at $\left(x_{0}, y_{0}\right)$, the partial derivatives are all evaluated at $\left(x_{0}, y_{0}\right)$.

Complex-Differentiability

Every function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(x+i y)=u+i v$ corresponds to a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(u(x, y), v(x, y))$.

If $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic, then

$$
\begin{equation*}
\lim _{\Delta z \rightarrow 0} \frac{f\left(z+z_{0}\right)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right) \Delta z}{\Delta z}=0 . \tag{1}
\end{equation*}
$$

By comparing equation (1) and Definition 3, we see that $D f\left(x_{0}, y_{0}\right) \cdot\binom{\Delta x}{\Delta y}=f^{\prime}\left(z_{0}\right) \cdot \Delta z$ under the natural correspondence $\binom{\Delta x}{\Delta y}=(\Delta x, \Delta y)=\Delta z$ between \mathbb{R}^{2} and \mathbb{C}.

The obvious question is:
Question: What is the difference between $f^{\prime}\left(z_{0}\right)$ and $D f\left(x_{0}, y_{0}\right)$?

1. Comparing Definition 3 and Equation 1, we see that $(\Delta x, \Delta y) \leftrightarrow \Delta z$ and $\operatorname{Df}\left(x_{0}, y_{0}\right) \leftrightarrow f^{\prime}\left(z_{0}\right)$. If we write $f^{\prime}\left(z_{0}\right)=\delta_{1}+i \delta_{2}$ and $\Delta z=\Delta x+i \Delta y$, we see that

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) \Delta z & =\left(\delta_{1}+i \delta_{2}\right)(\Delta x+i \Delta y) \\
& =\left(\delta_{1} \Delta x-\delta_{2} \Delta y\right)+i\left(\delta_{2} \Delta x+\delta_{1} \Delta y\right) \\
& =\binom{\delta_{1} \Delta x-\delta_{2} \Delta y}{\delta_{2} \Delta x+\delta_{1} \Delta y} \\
& =\left(\begin{array}{cc}
\delta_{1} & -\delta_{2} \\
\delta_{2} & \delta_{1}
\end{array}\right)\binom{\Delta x}{\Delta y}=\operatorname{Df}\left(x_{0}, y_{0}\right) \cdot\binom{\Delta x}{\Delta y} .
\end{aligned}
$$

We conclude that when f is complex-differentiable at $z_{0}=\left(x_{0}, y_{0}\right)$ (that is, $f^{\prime}\left(z_{0}\right)$ exists), then $\mathrm{Df}=\left(\begin{array}{cc}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right)=\left(\begin{array}{cc}\delta_{1} & -\delta_{2} \\ \delta_{2} & \delta_{1}\end{array}\right)$ and the partial derivatives satisfy

$$
\frac{\partial u}{\partial x}=\delta_{1}=\frac{\partial v}{\partial y} ; \text { and } \frac{\partial u}{\partial y}=\delta_{2}=-\frac{\partial v}{\partial x} . \text { (the Cauchy-Riemann equations) }
$$

2. Your book records this as

Theorem 1. If $f(z)$ is analytic, then its Jacobian matrix $J_{f}=D f\left(\right.$ as a map from \mathbb{R}^{2} to \mathbb{R}^{2}) has determinant

$$
\operatorname{det} J_{f}(z)=\left|f^{\prime}(z)\right|^{2}
$$

3. A (real) differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ need not be complex-differentiable. A simple example of this is the function $f(x, y)=(x,-y)$; that is, $f(z)=\bar{z}$. Then, $\mathrm{Df}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, but the partial derivatives of f do not satisfy the Cauchy-Riemann equations. So, $f(z)=\bar{z}$ is real-differentiable but not complex-differentiable.

The point of all this is that the algebraic structure placed on the complex plane introduces an additional constraint on complex-differentiability that is not required for real-differentiability. As we shall see, this additional constraint leads to far-reaching consequences.

