
A Note on Differentiability

1. Real-Differentiability

Recall that in one-variable calculus, we define differentiability as follows:

Definition 1. A function f : R → R is differentiable at x0 if lim
∆x→0

f(x0 +∆x)− f(x0)

∆x
= m for

some number m ∈ R. When this occurs, we define f ′(x0) := m and call f ′(x0) the derivative of f
at x0.

Unfortunately, this definition does not generalize to functions f : Rn → Rm. However, the following
equivalent definition does generalize to functions f : Rn → Rm.

Definition 2. A function f : R → R is differentiable at x0 if

lim
|∆x|→0

|f(x0 +∆x)− f(x0)−m∆x|
|∆x|

= 0 for some number m ∈ R.

When this occurs, we define f ′(x0) := m and call f ′(x0) the derivative of f at x0.

The reason the above two definitions are equivalent can be seen by the following computation:

lim
|∆x|→0

|f(x0 +∆x)− f(x0)−m∆x|
|∆x|

= lim
|∆x|→0

∣∣∣∣f(x0 +∆x)− f(x0)−m∆x

∆x

∣∣∣∣
= lim

|∆x|→0

∣∣∣∣f(x0 +∆x)− f(x0)

∆x
−m

∣∣∣∣ .
The second definition generalizes naturally to functions of the form f : R2 → R2.

Definition 3. A function f : R2 → R2 given by f(x, y) = (u(x, y), v(x, y)) is differentiable at
(x0, y0) if there is a 2× 2 matrix M such that

lim
|(∆x,∆y)|→0

∣∣∣∣(u(x0 +∆x, y0 +∆y)− u(x0, y0), v(x0 +∆x, y0 +∆y)− v(x0, y0)

)
−M

(
∆x
∆y

)∣∣∣∣
|(∆x,∆y)|

= 0.

When this occurs, we define Df(x0, y0) := M and call Df(x0, y0) the derivative of f at (x0, y0).
When the point (x0, y0) is clear from the context, we often simply write Df for the derivative of f .
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We used the following notational conventions in the above definition.

1. |(∆x,∆y)| :=
√
∆x2 +∆y2.

2.

(
∆x
∆y

)
= (∆x,∆y)

• ordered pairs may be written as either columns or rows.

3. M

(
∆x
∆y

)
=

(
m11 m12

m21 m22

)(
∆x
∆y

)
=

(
m11∆x+m12∆y
m21∆x+m22∆y

)
= (m11∆x+m12∆y, m21∆x+m22∆y).

• ordered pairs are written as columns in order to perform matrix multiplication.

Theorem 1. If f : R2 → R2 given by f(x, y) =
(
u(x, y), v(x, y)

)
has continuous partial derivatives,

then f is differentiable, and the derivative Df is the matrix of partial derivatives, also called Jf , the
Jacobian matrix of f .

Df = Jf =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

When Df(x0, y0) = Jf (x0, y0) is the derivative of f at (x0, y0), the partial derivatives are all evalu-
ated at (x0, y0).

Complex-Differentiability

Every function f : C → C given by f(x+ i y) = u+ i v corresponds to a function f : R2 → R2 given
by f(x, y) = (u(x, y), v(x, y)).

If f : C → C is analytic, then

lim
∆z→0

f(z + z0)− f(z0)− f ′(z0)∆z

∆z
= 0. (1)

By comparing equation (1) and Definition 3, we see that Df(x0, y0) ·
(
∆x
∆y

)
= f ′(z0) · ∆z under

the natural correspondence

(
∆x
∆y

)
= (∆x,∆y) = ∆z between R2 and C.

The obvious question is:

Question: What is the difference between f ′(z0) and Df(x0, y0)?
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1. Comparing Definition 3 and Equation 1, we see that (∆x, ∆y) ↔ ∆z and Df(x0, y0) ↔ f ′(z0).
If we write f ′(z0) = δ1 + iδ2 and ∆z = ∆x+ i∆y, we see that

f ′(z0)∆z = (δ1 + iδ2)(∆x+ i∆y)

= (δ1∆x− δ2∆y) + i(δ2∆x+ δ1∆y)

=

(
δ1∆x− δ2∆y
δ2∆x+ δ1∆y

)
=

(
δ1 −δ2
δ2 δ1

)(
∆x
∆y

)
= Df(x0, y0) ·

(
∆x
∆y

)
.

We conclude that when f is complex-differentiable at z0 = (x0, y0) (that is, f ′(z0) exists),

then Df =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

(
δ1 −δ2
δ2 δ1

)
and the partial derivatives satisfy

∂u

∂x
= δ1 =

∂v

∂y
; and

∂u

∂y
= δ2 = −∂v

∂x
. (the Cauchy-Riemann equations)

2. Your book records this as

Theorem 1. If f(z) is analytic, then its Jacobian matrix Jf = Df (as a map from R2 to R2)
has determinant

det Jf (z) = |f ′(z)|2.

3. A (real) differentiable function f : R2 → R2 need not be complex-differentiable. A simple

example of this is the function f(x, y) = (x,−y); that is, f(z) = z̄. Then, Df =

(
1 0
0 −1

)
,

but the partial derivatives of f do not satisfy the Cauchy-Riemann equations. So, f(z) = z̄
is real-differentiable but not complex-differentiable.

The point of all this is that the algebraic structure placed on the complex plane introduces an
additional constraint on complex-differentiability that is not required for real-differentiability. As
we shall see, this additional constraint leads to far-reaching consequences.
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