Math 120A
September 1, 2022

Question 1 Suppose $f(z)$ has an essential singularity at z_{0}. Then,
A. $\operatorname{Res}\left[f(z), z_{0}\right]$, the residue of $f(z)$ at z_{0}, is undefined.
B. $\int_{\left|\zeta-z_{0}\right|=\epsilon} f(\zeta) d \zeta$ is not defined for any $\epsilon>0$.
C. $f(z)$ is not analytic at ∞.
*D. $\operatorname{Res}\left[f(z), z_{0}\right]$ is the coefficient of $\left(z-z_{0}\right)^{-1}$ in the Laurent series for f centered at z_{0}.
E. none of the above.

Question 2 A function $f(z)$ has a nonzero residue at z_{0} if
A. z_{0} is an isolated singularity of $f(z)$
B. the principal part of $f(z)$ is not zero.
${ }^{*} C . z_{0}$ is the only singularity of $f(z)$ in $\left|z-z_{0}\right|<\rho$ and

$$
\int_{\left|\zeta-z_{0}\right|=\epsilon} f(\zeta) d \zeta \neq 0 \text { for every } 0<\epsilon<\rho
$$

D. all of the above.
E. none of the above.

Question 3 It is a foundational result of complex analysis that a function $f(z)$ analytic on a disk $\left|z-z_{0}\right|<R$ is represented by a power
series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence R. Why is this true?
A. That's what analytic means. It's the definition.
B. Real-valued functions with derivatives of all orders are analytic. It works the same for complex-valued functions.
C. So that the studying complex analysis can be made a little bit simpler.
*D. Cauchy's theorem allows us to write

$$
f(z)=\sum_{k=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(w)}{\left(w-z_{0}\right)^{k+1}} d w\right) z^{k}
$$

for each fixed $0<r<R$.
E. None of the above. What's a power series?

Question 4 Let $f(z)=e^{z}$ and $g(z)=z^{\frac{1}{4}}$.
A. $f(z)$ is single-valued, but $g(z)$ is multiple-valued.
B. $f\left(\frac{1}{4}\right)=g(e)$ since they are both equal to $e^{\frac{1}{4}}$.
C. $g(e)=\left\{e^{\frac{1}{4}+i \frac{\pi}{2} k}, k=0,1,2,3\right\}$.
D. B and C
*E. A and C

Question 5 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(u(x, y), v(x, y))$. Suppose f has continuous partial derivatives. Then,
A. f is differentiable.
B. $\mathrm{Df}=\left(\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right)$ is the derivative of f.
C. Viewing f as $f(x+i y)=u(x+i y)+i v(x+i y), f$ is complex differentiable.
*D. A and B
E. A, B, and C

Question 6 A function $f(x, y)=(u(x, y), v(x, y))$ is complex differentiable at $z_{0}=\left(x_{0}, y_{0}\right)$ if and only if
A. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ at $\left(x_{0}, y_{0}\right)$.
B. $\frac{\partial}{\partial x}(u+i v)=\frac{1}{i} \frac{\partial}{\partial y}(u+i v)$ at $\left(x_{0}, y_{0}\right)$.
C. $\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f(z)}{\Delta z}$ converges.
D. A and C.
*E. A, B, and C.

Question 7 Suppose $\sum_{k=0}^{\infty} a_{k} z_{0}^{k}$ converges. We conclude that $\sum_{k=0}^{\infty} a_{k} z^{k}$
A. converges absolutely for every z with $|z|<\left|z_{0}\right|$.
B. converges uniformly for every z with $|z| \leq r$ whenever $r<\left|z_{0}\right|$.
C. converges absolutely for every z with $|z|=\left|z_{0}\right|$.
*D. A and B.
E. all of the above.

Question $8 f(z)$ has a pole of order N at infinity if
A. $P_{\infty}(z)$, the principal part of $f(z)$ at ∞, is a polynomial of degree N; i.e., $P_{\infty}(z)=b_{N} z^{N}+b_{N-1} z^{N-1}+\cdots b_{1} z+b_{0}$.
B. $g(w)=f(1 / w)$ has a pole of order N at $w=0$.
C. $g(w)=f(1 / w)$ has a zero of order N at $w=0$.
*D. A and \mathbf{B}
E. A and C

