Math 120A September 1, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Suppose f(z) has an essential singularity at z_0 . Then,

A. Res $[f(z), z_0]$, the residue of f(z) at z_0 , is undefined.

B.
$$\int_{|\zeta-z_0|=\epsilon} f(\zeta) \, d\zeta$$
 is not defined for any $\epsilon > 0$.

C. f(z) is not analytic at ∞ .

*D. Res $[f(z), z_0]$ is the coefficient of $(z - z_0)^{-1}$ in the Laurent series for f centered at z_0 .

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

E. none of the above.

Question 2 A function f(z) has a nonzero residue at z_0 if

A. z_0 is an isolated singularity of f(z)

B. the principal part of f(z) is not zero.

*C.
$$z_0$$
 is the only singularity of $f(z)$ in $|z - z_0| < \rho$ and
$$\int_{|\zeta - z_0| = \epsilon} f(\zeta) \, d\zeta \neq 0 \text{ for every } 0 < \epsilon < \rho.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

D. all of the above.

E. none of the above.

Question 3 It is a foundational result of complex analysis that a function f(z) analytic on a disk $|z - z_0| < R$ is represented by a power series $\sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence R. Why is this true?

A. That's what analytic means. It's the definition.

- B. Real-valued functions with derivatives of all orders are analytic. It works the same for complex-valued functions.
- C. So that the studying complex analysis can be made a little bit simpler.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

*D. Cauchy's theorem allows us to write

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(w)}{(w-z_0)^{k+1}} dw \right) z^k$$
for each fixed $0 < r < R$.

E. None of the above. What's a power series?

Question 4 Let $f(z) = e^z$ and $g(z) = z^{\frac{1}{4}}$. A. f(z) is single-valued, but g(z) is multiple-valued. B. $f\left(\frac{1}{4}\right) = g(e)$ since they are both equal to $e^{\frac{1}{4}}$. C. $g(e) = \left\{e^{\frac{1}{4}+i\frac{\pi}{2}k}, k = 0, 1, 2, 3\right\}$. D. B and C *E. A and C

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question 5 Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x, y) = (u(x, y), v(x, y)). Suppose f has continuous partial derivatives. Then,

A. f is differentiable.

B.
$$Df = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$
 is the derivative of f .

C. Viewing f as f(x + iy) = u(x + iy) + iv(x + iy), f is complex differentiable.

- *D. A and B
 - E. A, B, and \boldsymbol{C}

Question 6 A function f(x, y) = (u(x, y), v(x, y)) is complex differentiable at $z_0 = (x_0, y_0)$ if and only if

A.
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at (x_0, y_0) .
B. $\frac{\partial}{\partial x} (u + iv) = \frac{1}{i} \frac{\partial}{\partial y} (u + iv)$ at (x_0, y_0) .
C. $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z)}{\Delta z}$ converges.
D. **A** and **C**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

*E. **A**, **B**, and **C**.

Question 7 Suppose $\sum_{k=0}^{\infty} a_k z_0^k$ converges. We conclude that $\sum_{k=0}^{\infty} a_k z^k$

A. converges absolutely for every z with $|z| < |z_0|$.

B. converges uniformly for every z with $|z| \le r$ whenever $r < |z_0|$.

- C. converges absolutely for every z with $|z| = |z_0|$.
- *D. **A** and **B**.
 - E. all of the above.

Question 8 f(z) has a pole of order N at infinity if

A. $P_{\infty}(z)$, the principal part of f(z) at ∞ , is a polynomial of degree N; i.e., $P_{\infty}(z) = b_N z^N + b_{N-1} z^{N-1} + \cdots + b_1 z + b_0$.

- B. g(w) = f(1/w) has a pole of order N at w = 0.
- C. g(w) = f(1/w) has a zero of order N at w = 0.
- *D. **A** and **B**
 - E. A and C