Math 120A August 29, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given R > 0, let $\gamma = \{z \in \mathbb{C} \mid |z| = R\}$. Then,

A. γ can be parametrized by $z(t) = Re^{it}$ with $0 \le t < 2\pi$.

B.
$$\int_{\gamma} |z^2| dz = \int_{0}^{2\pi} R^2 \cdot R \, ie^{it} dt = R^3 e^{it} \Big|_{t=0}^{2\pi} = 0$$

C. $\int_{\gamma} |z^2| |dz| = \int_{0}^{2\pi} R^2 \cdot R \, dt = 2\pi R^3.$

*D. All of the above.

E. None of the above. Complex line integrals can't be real.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Question 2 To develop a power series $\sum_{k=0}^{\infty} a_k(z-i)^k$ centered at $z_0 = i$ for $f(z) = \frac{1}{z-1}$, one could write $f(z) = -\frac{1}{1-z} = -(1-z)^{-1}$ and:

A. Compute $f^{(k)}(z) = -k!(1-z)^{-(k+1)} = \frac{k!}{(1-z)^{k+1}}$ so that $f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(i)}{k!} (z-i)^k = \sum_{k=0}^{\infty} -\frac{1}{(1-i)^{k+1}} (z-i)^k.$

B. Write
$$f(z) = -\frac{1}{(1-i)-(z-i)} = -\frac{1}{1-i} \cdot \frac{1}{1-(\frac{z-i}{1-i})}$$
 so that
 $f(z) = -\frac{1}{1-i} \sum_{k=0}^{\infty} \left(\frac{z-i}{1-i}\right)^k = \sum_{k=0}^{\infty} -\frac{1}{(1-i)^{k+1}} (z-i)^k.$

- *C. Either **A** or **B**. Both are great ways to develop the power series.
- D. Neither **A** nor **B**. $f(z) = \frac{1}{z-1}$ is not analytic on any disk centered at $z_0 = i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

E. This selection has intentionally been left blank.

Question 3 The function $f(z) = \frac{1}{z} + \frac{1}{z^5}$ can be written $f(z) = \frac{z^4 + 1}{z^5}$. We can conclude that

A.
$$\frac{1}{z} + \frac{1}{z^5}$$
 is the Laurent series of f for $|z| > 0$.
B. $f(z)$ has four simple zeros: $z \in \left\{e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}}\right\}$.
C. $f(z)$ has a simple zero at ∞ .
D. $g(w) = f(1/w) = w(1 + w^4)$ has a simple zero at $w = 0$.
*E. All of the above.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 4 Log(z) is not analytic at $z_0 = 0$. $z_0 = 0$ is called

- A. an isolated singularity of Log(z)
- *B. a branch point of Log(z)
 - C. an essential singularity of Log(z)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- D. A and B
- E. A and C

Question 5 f(z) has an isolated singularity at ∞ if

- A. f(z) is analytic outside some bounded set.
- B. there is R > 0 such that f(z) is analytic for |z| > R.
- C. g(w) = f(1/w) has an isolated singularity at w = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- D. A and B; they are the same.
- *E. A, B, and C; they are equivalent.

Question 6 f(z) has a pole of order N at infinity if

A. $P_{\infty}(z)$, the principal part of f(z) at ∞ , is a polynomial of degree N; i.e., $P_{\infty}(z) = b_N z^N + b_{N-1} z^{N-1} + \cdots + b_1 z + b_0$.

- B. g(w) = f(1/w) has a pole of order N at w = 0.
- C. g(w) = f(1/w) has a zero of order N at w = 0.
- *D. **A** and **B**
 - E. A and C