Math 120A August 24, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given a power series $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence $R = +\infty$. We can conclude

- A. f(z) converges for all $z \in \mathbb{C}$.
- B. f(z) converges for all z with $|z z_0| < R$.
- C. f(z) converges for all z with |z| < R.
- *D. all of the above since every positive real number is less than $+\infty$.
 - E. none of the above since $+\infty$ is not a positive real number and cannot be a radius of convergence.

Question 2 Suppose $\sum_{k=0}^{\infty} a_k z_0^k$ converges. We conclude that $\sum_{k=0}^{\infty} a_k z^k$

A. converges absolutely for every z with $|z| < |z_0|$.

B. converges uniformly for every z with $|z| \le r$ whenever $r < |z_0|$.

- C. converges absolutely for every z with $|z| = |z_0|$.
- *D. **A** and **B**.
 - E. all of the above.

Question 3 An analytic function f(z) has a zero of order N at z_0 if

A. $f(z) = h(z)(z - z_0)^N$ for some analytic function h(z) with $h(z_0) \neq 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

B.
$$f(z_0) = f'(z_0) = \cdots = f^{(N-1)}(z_0) = 0$$
 and $f^{(N)}(z_0) \neq 0$

C.
$$f(z) = g(z)^N$$
 for some analytic function $g(z)$ with $g'(z_0) \neq 0$

- *D. All of the above
 - E. None of the above. Zeros don't have any order

Question 4 Let $f(z) = \frac{1}{1+z^2}$.

A. $f(z) = \sum_{k=0}^{\infty} (-1)^k z^{2k}$ is the power series for f centered at 0 and converges for |z| < 1.

B.
$$f(z) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{z^{2k}}$$
 is the power series for f centered at ∞ and converges for $|z| > 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

C.
$$f(z)$$
 has a zero at ∞ .

- D. **A** and **C**.
- *E. All of the above.