Math 120A
August 24, 2022

Question 1 Given a power series $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence $R=+\infty$. We can conclude
A. $f(z)$ converges for all $z \in \mathbb{C}$.
B. $f(z)$ converges for all z with $\left|z-z_{0}\right|<R$.
C. $f(z)$ converges for all z with $|z|<R$.
*D. all of the above since every positive real number is less than $+\infty$.
E. none of the above since $+\infty$ is not a positive real number and cannot be a radius of convergence.

Question 2 Suppose $\sum_{k=0}^{\infty} a_{k} z_{0}^{k}$ converges. We conclude that $\sum_{k=0}^{\infty} a_{k} z^{k}$
A. converges absolutely for every z with $|z|<\left|z_{0}\right|$.
B. converges uniformly for every z with $|z| \leq r$ whenever $r<\left|z_{0}\right|$.
C. converges absolutely for every z with $|z|=\left|z_{0}\right|$.
*D. A and B.
E. all of the above.

Question 3 An analytic function $f(z)$ has a zero of order N at z_{0} if
A. $f(z)=h(z)\left(z-z_{0}\right)^{N}$ for some analytic function $h(z)$ with $h\left(z_{0}\right) \neq 0$
B. $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(N-1)}\left(z_{0}\right)=0$ and $f^{(N)}\left(z_{0}\right) \neq 0$
C. $f(z)=g(z)^{N}$ for some analytic function $g(z)$ with $g^{\prime}\left(z_{0}\right) \neq 0$
*D. All of the above
E. None of the above. Zeros don't have any order

Question 4 Let $f(z)=\frac{1}{1+z^{2}}$.
A. $f(z)=\sum_{k=0}^{\infty}(-1)^{k} z^{2 k}$ is the power series for f centered at 0 and converges for $|z|<1$.
B. $f(z)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{z^{2 k}}$ is the power series for f centered at ∞ and converges for $|z|>1$.
C. $f(z)$ has a zero at ∞.
D. A and \mathbf{C}.
*E. All of the above.

