Math 120A
August 23, 2022

Question 1 Given a power series $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence $R=+\infty$. We can conclude
A. $f(z)$ converges for all $z \in \mathbb{C}$.
B. $f(z)$ converges for all z with $\left|z-z_{0}\right|<R$.
C. $f(z)$ converges for all z with $|z|<R$.
*D. all of the above since every positive real number is less than $+\infty$.
E. none of the above since $+\infty$ is not a positive real number and cannot be a radius of convergence.

Question 2 Suppose $\sum_{k=0}^{\infty} a_{k} z_{0}^{k}$ converges. We conclude that $\sum_{k=0}^{\infty} a_{k} z^{k}$
A. converges absolutely for every z with $|z|<\left|z_{0}\right|$.
B. converges uniformly for every z with $|z| \leq r$ whenever $r<\left|z_{0}\right|$.
C. converges absolutely for every z with $|z|=\left|z_{0}\right|$.
*D. A and B.
E. all of the above.

Question 3 Given a power series $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence $R=0$. We can conclude
A. $f(z)$ converges only when $z=z_{0}$.
B. $f(z)$ converges for all z with $\left|z-z_{0}\right| \leq R$.
C. $f(z)$ converges for all z with $\left|z-z_{0}\right|<R$.
*D. A and \mathbf{B}; they are the same.
E. none of the above since a radius must be positive.

Question 4 It is a foundational result of complex analysis that a function $f(z)$ analytic on a disk $\left|z-z_{0}\right|<R$ is represented by a power
series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence R. Why is this true?
A. That's what analytic means. It's the definition.
B. Real-valued functions with derivatives of all orders are analytic. It works the same for complex-valued functions.
C. So that the studying complex analysis can be made a little bit simpler.
*D. Cauchy's theorem allows us to write

$$
f(z)=\sum_{k=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(w)}{\left(w-z_{0}\right)^{k+1}} d w\right) z^{k}
$$

for each fixed $0<r<R$.
E. None of the above. What's a power series?

