Math 120A August 23, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given a power series $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence $R = +\infty$. We can conclude

- A. f(z) converges for all $z \in \mathbb{C}$.
- B. f(z) converges for all z with $|z z_0| < R$.
- C. f(z) converges for all z with |z| < R.
- *D. all of the above since every positive real number is less than $+\infty$.
 - E. none of the above since $+\infty$ is not a positive real number and cannot be a radius of convergence.

Question 2 Suppose $\sum_{k=0}^{\infty} a_k z_0^k$ converges. We conclude that $\sum_{k=0}^{\infty} a_k z^k$

A. converges absolutely for every z with $|z| < |z_0|$.

B. converges uniformly for every z with $|z| \le r$ whenever $r < |z_0|$.

- C. converges absolutely for every z with $|z| = |z_0|$.
- *D. **A** and **B**.
 - E. all of the above.

Question 3 Given a power series $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence R = 0. We can conclude

A. f(z) converges only when $z = z_0$.

B. f(z) converges for all z with $|z - z_0| \le R$.

C. f(z) converges for all z with $|z - z_0| < R$.

- *D. A and B; they are the same.
 - E. none of the above since a radius must be positive.

A D N A 目 N A E N A E N A B N A C N

Question 4 It is a foundational result of complex analysis that a function f(z) analytic on a disk $|z - z_0| < R$ is represented by a power series $\sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence R. Why is this true?

A. That's what *analytic* means. It's the definition.

- B. Real-valued functions with derivatives of all orders are analytic. It works the same for complex-valued functions.
- C. So that the studying complex analysis can be made a little bit simpler.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

*D. Cauchy's theorem allows us to write

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(w)}{(w-z_0)^{k+1}} dw \right) z^k$$
for each fixed $0 < r < R$.

E. None of the above. What's a power series?