Math 120A
August 22, 2022

Question 1 The functions $f_{k}:[0,1] \rightarrow \mathbb{R}$ given by $f_{k}(x)=x^{k}$
A. are all continuous.
B. converge pointwise to a discontinuous function.
C. converge uniformly to a discontinuous function.
*D. A and B.
E. all of the above; if they converge uniformly, they also converge pointwise.

Question 2 Given a power series $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence $R=+\infty$. We can conclude
A. $f(z)$ converges for all $z \in \mathbb{C}$.
B. $f(z)$ converges for all z with $\left|z-z_{0}\right|<R$.
C. $f(z)$ converges for all z with $|z|<R$.
*D. all of the above since every positive real number is less than $+\infty$.
E. none of the above since $+\infty$ is not a positive real number and cannot be a radius of convergence.

Question 3 Suppose $\sum_{k=0}^{\infty} a_{k} z_{0}^{k}$ converges. We conclude that $\sum_{k=0}^{\infty} a_{k} z^{k}$
A. converges absolutely for every z with $|z|<\left|z_{0}\right|$.
B. converges uniformly for every z with $|z| \leq r$ whenever $r<\left|z_{0}\right|$.
C. converges absolutely for every z with $|z|=\left|z_{0}\right|$.
*D. A and B.
E. all of the above.

Question 4 Given a power series $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ with radius of convergence $R=0$. We can conclude
A. $f(z)$ converges only when $z=z_{0}$.
B. $f(z)$ converges for all z with $\left|z-z_{0}\right| \leq R$.
C. $f(z)$ converges for all z with $\left|z-z_{0}\right|<R$.
*D. A and \mathbf{B}; they are the same.
E. none of the above since a radius must be positive.

