Math 120A August 22, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 The functions $f_k : [0,1] \to \mathbb{R}$ given by $f_k(x) = x^k$

A. are all continuous.

- B. converge pointwise to a discontinuous function.
- C. converge uniformly to a discontinuous function.
- *D. **A** and **B**.
 - E. all of the above; if they converge uniformly, they also converge pointwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question 2 Given a power series $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence $R = +\infty$. We can conclude

- A. f(z) converges for all $z \in \mathbb{C}$.
- B. f(z) converges for all z with $|z z_0| < R$.
- C. f(z) converges for all z with |z| < R.
- *D. all of the above since every positive real number is less than $+\infty$.
 - E. none of the above since $+\infty$ is not a positive real number and cannot be a radius of convergence.

Question 3 Suppose $\sum_{k=0}^{\infty} a_k z_0^k$ converges. We conclude that $\sum_{k=0}^{\infty} a_k z^k$

A. converges absolutely for every z with $|z| < |z_0|$.

B. converges uniformly for every z with $|z| \le r$ whenever $r < |z_0|$.

- C. converges absolutely for every z with $|z| = |z_0|$.
- *D. **A** and **B**.
 - E. all of the above.

Question 4 Given a power series $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence R = 0. We can conclude

A. f(z) converges only when $z = z_0$.

B. f(z) converges for all z with $|z - z_0| \le R$.

C. f(z) converges for all z with $|z - z_0| < R$.

- *D. A and B; they are the same.
 - E. none of the above since a radius must be positive.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・