Math 120A
August 17, 2022

Question 1 Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth path with length L. We can conclude
A. $\left|\int_{\gamma} d z\right| \leq L$.
B. $\int_{\gamma}|d z|=L$.
C. $\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=L$.
D. B and \mathbf{C}; they are the same.
*E. all of the above.

Question 2 A set $D \subset \mathbb{C}$ is a domain if
A. for every $z \in D$ there is $\epsilon>0$ so that $\{w \in \mathbb{C}||w-z|<\epsilon\} \subset D$.
B. any two points in D can be connected by a continuous path consisting of a finite number of line segments.
C. for every pair of points $z_{1}, z_{2} \in D$, the line segment joining them is contained in D.
*D. A and B.
E. all of the above.

Question 3 Let γ be the curve $|z|=2$ with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^{n}}{z-3} d z$
*A. is equal to 0 by Cauchy's theorem.
B. is equal to 3^{n} by the Cauchy integral theorem.
C. is equal to $2 \pi i 3^{n}$ by the Cauchy integral theorem.
D. is undefined because $\frac{z^{n}}{z-3}$ is undefined at $z=3$.
E. none of the above.

Question 4 Let γ be the curve $|z|=2$ with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^{n}}{z-1} d z$
A. is equal to 0 by Cauchy's theorem.
B. is equal to 1 by the Cauchy integral theorem.
${ }^{*} \mathrm{C}$. is equal to $2 \pi i$ by the Cauchy integral theorem.
D. is undefined because $\frac{z^{n}}{z-1}$ is undefined at $z=1$.
E. none of the above.

