Math 120A
August 16, 2022

Question 1 A function is said to be smooth if it
A. is continuous.
B. is differentiable.
C. is continuously differentiable.
D. has derivatives of all orders (also called "infinitely differentiable").
*E. has as many derivatives as necessary for whatever is being asserted to be true.

Question 2 Recall that the differential $-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$ has the following two properties:

$$
\text { 1. } \frac{\partial}{\partial y}\left(-\frac{y}{x^{2}+y^{2}}\right)=\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right) \text {. }
$$

2. $\oint_{x^{2}+y^{2}=1}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y=2 \pi$.

Therefore, we can conclude that $-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$
*A. is closed.
B. is exact.
C. is both closed and exact.
D. is neither closed nor exact.
E. violates Green's theorem.

Question 3 A primitive of a continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ is
A. an antiderivative of f.
B. a function $F: \mathbb{C} \rightarrow \mathbb{C}$ such that $F^{\prime}(z)=f(z)$.
C. an exact differential of f.
*D. both \mathbf{A} and \mathbf{B}.
E. all of the above.

Question 4 Recall that $\log (z)$ is the principle branch of the logarithm and that $\log ^{\prime}(z)=\frac{1}{z}$ at all points $z \in \mathbb{C}$ where this makes sense. Thus,
A. $\log (z)$ is a primitive for $\frac{1}{z}$ on the punctured plane $\mathbb{C} \backslash\{0\}$ since neither $\log (z)$ nor $\frac{1}{z}$ are defined at 0 .
B. $\log (z)$ is an antiderivative for $\frac{1}{z}$ on the slit plane $\mathbb{C} \backslash(-\infty, 0]$.
C. $\log (z)$ is a primitive for $\frac{1}{z}$ on the slit plane $\mathbb{C} \backslash(-\infty, 0]$.
*D. B and C; they are the same.
E. none of the above; slitting or puncturing planes is vandalism and is not allowed.

Question 5 A continuous path $\gamma:[a, b] \rightarrow \mathbb{C}$ is simple if
A. $\gamma(b)=\gamma(a)$.
*B. $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ whenever $t_{1} \neq t_{2}$.
C. the image curve $\gamma([a, b])$ has no self-intersections.
D. B and C.
E. all of the above.

Question 6 A continuous path $\gamma:[a, b] \rightarrow \mathbb{C}$ is closed if
*A. $\gamma(b)=\gamma(a)$.
B. $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ whenever $t_{1} \neq t_{2}$.
C. the image curve $\gamma([a, b])$ has no self-intersections.
D. B and C.
E. all of the above.

