Math 120A August 16, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 A function is said to be *smooth* if it

- A. is continuous.
- B. is differentiable.
- C. is continuously differentiable.
- D. has derivatives of all orders (also called "infinitely differentiable").
- *E. has as many derivatives as necessary for whatever is being asserted to be true.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question 2 Recall that the differential $-\frac{y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy$ has the following two properties:

1.
$$\frac{\partial}{\partial y} \left(-\frac{y}{x^2 + y^2} \right) = \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right).$$

2.
$$\oint_{x^2 + y^2 = 1} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = 2\pi.$$

Therefore, we can conclude that $-\frac{y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy$

- *A. is closed.
 - B. is exact.
 - C. is both closed and exact.
 - D. is neither closed nor exact.
 - E. violates Green's theorem.

Question 3 A primitive of a continuous function $f : \mathbb{C} \to \mathbb{C}$ is

A. an antiderivative of f.

B. a function $F : \mathbb{C} \to \mathbb{C}$ such that F'(z) = f(z).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

C. an exact differential of f.

*D. both **A** and **B**.

E. all of the above.

Question 4 Recall that Log(z) is the principle branch of the logarithm and that $\operatorname{Log}'(z)=rac{1}{z}$ at all points $z\in\mathbb{C}$ where this makes sense. Thus, A. Log(z) is a primitive for $\frac{1}{z}$ on the punctured plane $\mathbb{C} \setminus \{0\}$ since neither Log(z) nor $\frac{1}{z}$ are defined at 0. B. Log(z) is an antiderivative for $\frac{1}{z}$ on the slit plane $\mathbb{C} \setminus (-\infty, 0].$ C. Log(z) is a primitive for $\frac{1}{z}$ on the slit plane $\mathbb{C} \setminus (-\infty, 0]$.

- *D. **B** and **C**; they are the same.
 - E. none of the above; slitting or puncturing planes is vandalism and is not allowed.

(日)((1))

Question 5 A continuous path $\gamma : [a, b] \rightarrow \mathbb{C}$ is *simple* if

A.
$$\gamma(b) = \gamma(a)$$
.

*B.
$$\gamma(t_1) \neq \gamma(t_2)$$
 whenever $t_1 \neq t_2$.

C. the image curve $\gamma([a, b])$ has no self-intersections.

- D. B and C.
- E. all of the above.

Question 6 A continuous path $\gamma : [a, b] \to \mathbb{C}$ is *closed* if

*A.
$$\gamma(b) = \gamma(a)$$
.

- B. $\gamma(t_1) \neq \gamma(t_2)$ whenever $t_1 \neq t_2$.
- C. the image curve $\gamma([a, b])$ has no self-intersections.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- D. **B** and **C**.
- E. all of the above.