Math 120A
August 9, 2022

Question 1 Let $f(z)=e^{z}$ and $g(z)=z^{\frac{1}{4}}$.
A. $f(z)$ is single-valued, but $g(z)$ is multiple-valued.
B. $f\left(\frac{1}{4}\right)=g(e)$ since they are both equal to $e^{\frac{1}{4}}$.
C. $g(e)=\left\{e^{\frac{1}{4}+i \frac{\pi}{2} k}, k=0,1,2,3\right\}$.
D. B and C
*E. A and C

Question 2 A function $f(x, y)=(u(x, y), v(x, y))$ is complex differentiable at $z_{0}=\left(x_{0}, y_{0}\right)$ if and only if
A. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ at $\left(x_{0}, y_{0}\right)$.
B. $\frac{\partial}{\partial x}(u+i v)=\frac{1}{i} \frac{\partial}{\partial y}(u+i v)$ at $\left(x_{0}, y_{0}\right)$.
C. $\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f(z)}{\Delta z}$ converges.
D. A and C.
*E. A, B, and C.

Question 3 Let n be a positive integer with $n \geq 2$, and let z be a nonzero complex number. Then,
*A. $z^{\frac{1}{n}}$ has n distinct values.
B. $z^{\frac{1}{n}}$ is single-valued.
C. $z^{\frac{1}{n}} \cdot z^{-\frac{1}{n}}=1$.
D. A and C
E. B and C

Question 4 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(u(x, y), v(x, y))$. Suppose f has continuous partial derivatives. Then,
A. f is differentiable.
B. $\mathrm{Df}=\left(\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right)$ is the derivative of f.
C. Viewing f as $f(x+i y)=u(x+i y)+i v(x+i y), f$ is complex differentiable.
*D. A and B
E. All of the above.

Question $5 f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has derivative $\mathrm{Df}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$.
We can conclude that
A. f is complex differentiable because the partial derivatives of f satisfy the Cauchy-Riemann equations.
B. f is differentiable but not complex differentiable because $f^{\prime}(z)$ cannot be written as a matrix.
C. f is complex differentiable and $\left|f^{\prime}(z)\right|^{2}=\operatorname{det}(D f)=2$.
*D. A and C
E. We can't conclude anything. Not enough information has been provided.

