Math 120A
August 8, 2022

Question 1 The power function z^{α} is single-valued
A. for every real number α.
B. for every rational number α.
${ }^{*} C$. for every integer α.
D. All of the above; after all, every rational number is a real number and every integer is a rational number.
E. None of the above; z^{α} is always multiple-valued.

Question 2 Let $f(z)=e^{z}$ and $g(z)=z^{\frac{1}{4}}$.
A. $f(z)$ is single-valued, but $g(z)$ is multiple-valued.
B. $f\left(\frac{1}{4}\right)=g(e)$ since they are both equal to $e^{\frac{1}{4}}$.
C. $g(e)=\left\{e^{\frac{1}{4}+i \frac{\pi}{2} k}, k=0,1,2,3\right\}$.
D. B and C
*E. A and C

Question 3 Let $f(z)$ and $g(z)$ be analytic for all $z \in \mathbb{C}$. Then,
A. $\frac{d}{d z}[f(z)+g(z)]=f^{\prime}(z)+g^{\prime}(z) \quad$ (sum rule)
B. $\frac{d}{d z}[f(z) g(z)]=f^{\prime}(z) g(z)+f(z) g^{\prime}(z) \quad$ (product rule)
C. $\frac{d}{d z} f(g(z))=f^{\prime}(g(z)) g^{\prime}(z) \quad$ (chain rule)
*D. All of the above; these formulas work exactly the same as in real-variable calculus.
E. None of the above; the formulas only work in real-variable calculus where everything is single-valued.

Question 4 A function $f(x, y)=(u(x, y), v(x, y))$ is complex differentiable at $z_{0}=\left(x_{0}, y_{0}\right)$ if and only if
A. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ at $\left(x_{0}, y_{0}\right)$.
B. $\frac{\partial}{\partial x}(u+i v)=\frac{1}{i} \frac{\partial}{\partial y}(u+i v)$ at $\left(x_{0}, y_{0}\right)$.
C. $\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f(z)}{\Delta z}$ converges.
D. A and \mathbf{C}.
*E. A, B, and C.

Question 5 Suppose $f(z)=u(x, y)+i v(x, y)$ is analytic on a domain D. Suppose further that $f(z)$ is real-valued on D. Then,
A. $v=0$ on D.
B. $\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}=0$ on D.
C. $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0$ on D.
*D. All of the above; in fact, f is constant on D.
E. None of the above. There are no real-valued analytic functions.

