Math 120A August 8, 2022

Question 1 The power function z^{α} is single-valued

- A. for every real number α .
- B. for every rational number α .
- *C. for every integer α .
 - D. All of the above; after all, every rational number is a real number and every integer is a rational number.
 - E. None of the above; z^{α} is always multiple-valued.

Question 2 Let $f(z) = e^z$ and $g(z) = z^{\frac{1}{4}}$.

A. f(z) is single-valued, but g(z) is multiple-valued.

B. $f\left(\frac{1}{4}\right) = g(e)$ since they are both equal to $e^{\frac{1}{4}}$.

C.
$$g(e) = \left\{ e^{\frac{1}{4} + i\frac{\pi}{2}k}, \ k = 0, 1, 2, 3 \right\}.$$

- D. B and C
- *E. A and C

Question 3 Let f(z) and g(z) be analytic for all $z \in \mathbb{C}$. Then,

A.
$$\frac{d}{dz}[f(z) + g(z)] = f'(z) + g'(z) \text{ (sum rule)}$$

B.
$$\frac{d}{dz}[f(z)g(z)] = f'(z)g(z) + f(z)g'(z)$$
 (product rule)

C.
$$\frac{d}{dz}f(g(z)) = f'(g(z))g'(z)$$
 (chain rule)

- *D. All of the above; these formulas work exactly the same as in real-variable calculus.
 - E. None of the above; the formulas only work in real-variable calculus where everything is single-valued.

Question 4 A function f(x,y) = (u(x,y), v(x,y)) is complex differentiable at $z_0 = (x_0, y_0)$ if and only if

A.
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at (x_0, y_0) .

B.
$$\frac{\partial}{\partial x}(u+iv) = \frac{1}{i}\frac{\partial}{\partial y}(u+iv)$$
 at (x_0,y_0) .

C.
$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z)}{\Delta z}$$
 converges.

- D. A and C.
- *E. **A**, **B**, and **C**.

Question 5 Suppose f(z) = u(x, y) + iv(x, y) is analytic on a domain D. Suppose further that f(z) is real-valued on D. Then,

- A. v = 0 on D.
- B. $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$ on D.
- C. $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$ on D.
- *D. All of the above; in fact, f is constant on D.
 - E. None of the above. There are no real-valued analytic functions.