Math 120A
August 4, 2022

Question 1 Let z be a complex number. Then,
A. $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$, which is a real number.
B. $\operatorname{Im}(z)=\frac{z-\bar{z}}{2}$, which is a purely imaginary number.
C. $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$, which is a real number.
D. A and B
*E. A and C

Question 2 Let n be a positive integer. An $n^{\text {th }}$ root of unity is a complex number z with the property that $z^{n}=1$. Thus,
A. 1 is an $n^{\text {th }}$ root of unity, and there are $n-1$ additional distinct $n^{\text {th }}$ roots of unity.
B. if w is an $n^{\text {th }}$ root of unity, then $w=e^{\frac{2 \pi i k}{n}}$ for some integer $k \in\{0,1, \ldots, n-1\}$.
C. i is an $n^{\text {th }}$ root of unity for all even integers n. For example, $i^{4}=1$ so i is a $4^{\text {th }}$ root of unity.
D. B and C
*E. A and \mathbf{B}

Question 3 Let n be a positive integer with $n \geq 2$, and let z be a nonzero complex number. Then,
*A. $z^{\frac{1}{n}}$ has n distinct values.
B. $z^{\frac{1}{n}}$ is single-valued.
C. $z^{\frac{1}{n}} \cdot z^{-\frac{1}{n}}=1$.
D. A and C
E. B and C

Question 4 The real-valued hyperbolic functions $\cosh (x)$ and $\sinh (x)$ are not periodic but satisfy the hyperbolic identity $\cosh ^{2}(x)-\sinh ^{2}(x)=1$. When extended to the complex numbers, $\cosh (z)$ and $\sinh (z)$
A. satisfy the hyperbolic identity $\cosh ^{2}(z)-\sinh ^{2}(z)=1$.
B. are still not periodic; after all, they're still hyperbolic.
C. are periodic with period $2 \pi i$, just like the exponential function.
D. A and B
*E. A and C

