Math 120A August 4, 2022

Question 1 Let z be a complex number. Then,

- A. $Re(z) = \frac{z + \overline{z}}{2}$, which is a real number.
- B. $\operatorname{Im}(z) = \frac{z \overline{z}}{2}$, which is a purely imaginary number.
- C. $Im(z) = \frac{z \overline{z}}{2i}$, which is a real number.
- D. A and B
- *E. A and C

Question 2 Let n be a positive integer. An n^{th} root of unity is a complex number z with the property that $z^n = 1$. Thus,

- A. 1 is an $n^{\rm th}$ root of unity, and there are n-1 additional distinct $n^{\rm th}$ roots of unity.
- B. if w is an n^{th} root of unity, then $w=e^{\frac{2\pi i k}{n}}$ for some integer $k\in\{0,1,\ldots,n-1\}$.
- C. i is an n^{th} root of unity for all even integers n. For example, $i^4 = 1$ so i is a 4^{th} root of unity.
- D. B and C
- *E. A and B

Question 3 Let n be a positive integer with $n \ge 2$, and let z be a nonzero complex number. Then,

- *A. $z^{\frac{1}{n}}$ has *n* distinct values.
 - B. $z^{\frac{1}{n}}$ is single-valued.
 - C. $z^{\frac{1}{n}} \cdot z^{-\frac{1}{n}} = 1$.
 - D. A and C
 - E. B and C

Question 4 The real-valued hyperbolic functions $\cosh(x)$ and $\sinh(x)$ are not periodic but satisfy the hyperbolic identity $\cosh^2(x) - \sinh^2(x) = 1$. When extended to the complex numbers, $\cosh(z)$ and $\sinh(z)$

- A. satisfy the hyperbolic identity $\cosh^2(z) \sinh^2(z) = 1$.
- B. are still not periodic; after all, they're still hyperbolic.
- C. are periodic with period $2\pi i$, just like the exponential function.
- D. A and B
- *E. **A** and **C**