Math 120A August 3, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 ${\color{black} Question 1}$ Stereographic projection is a one-to-one correspondence between

- A. \mathbb{C} , the complex plane and $S \setminus \{(0,0,1)\}$, the unit sphere minus the north pole.
- B. $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$, the extended complex plane and *S*, the unit sphere.
- C. \mathbb{R}^3 , 3-dimensional space and $\mathbb{C}^2 = \{(z, w) \mid z, w \in \mathbb{C}\}$, the set of ordered pairs of complex numbers.

- *D. A and B
 - E. A, B, and C

Question 2 Given $z \in \mathbb{C}$, it's argument $\arg(z)$ is

- A. the angle it makes with the positive real axis, with counterclockwise the positive orientation.
- B. the set of real numbers t for which $z = |z|e^{it}$.
- C. the imaginary part of log(z), the logarithm of z.

- *D. **B** and **C**.
 - E. A, B, and C.

Question 3 Log(z) is

- A. the principal branch of log(z).
- B. equal to $\log |z| + i \operatorname{Arg}(z)$, where $\operatorname{Arg}(z)$ is the principal branch of $\operatorname{arg}(z)$.
- C. a set-valued (multivalued) function because Arg(z) is a set-valued (multivalued) function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- *D. A and B
 - E. A, B, and C.

Question 4 Why does log(z) have branches?

- A. e^z is periodic.
- B. You have to restrict the domain of e^z to obtain an invertible function.
- C. There are many choices for a restricted domain on which e^z is invertible.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- D. Because logs come from trees and trees have branches.
- *E. A, B, and C.

Question 5 Given $z \in \mathbb{C}$ with |z| = 1. Then,

A.
$$z = e^{i\phi}$$
 for some real number ϕ .
B. $\frac{1}{z} = \overline{z}$
C. $|\operatorname{Re}(z) + \operatorname{Im}(z)| \le 1$.
*D. **A** and **B**.
E. B and **C**.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ