Math 20E
Final Examination
December 9, 2013

Version A

Instructions

1. You may use any type of calculator, but no other electronic devices during this exam.
2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write the Version of your exam on the front of your Blue Book.
5. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
6. Read each question carefully, and answer each question completely.
7. Show all of your work; no credit will be given for unsupported answers.
8. (2 points) Carefully read and complete the instructions at the top of this exam sheet.
9. (a) (4 points) Compute the derivatives $\mathbf{D} \mathbf{f}(u, v, w)$ and $\mathbf{D} \mathbf{g}(x, y)$ for the functions

$$
\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \quad \text { and } \quad \mathbf{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

given by

$$
\mathbf{f}(u, v, w)=\left(u^{2}+w^{2}, u v+v w\right) \quad \text { and } \quad \mathbf{g}(x, y)=\left(x^{2}, x y, y^{2}\right)
$$

(b) (4 points) Use the chain rule to compute the derivative $\mathbf{D}(\mathbf{f} \circ \mathbf{g})(2,1)$. $[$ Recall that $(\mathbf{f} \circ \mathbf{g})(x, y)=\mathbf{f}(\mathbf{g}(x, y))$.
2. (6 points) Let R be the region bounded by $x y=1, x y=3, x=1$, and $x=3$. Use the change of variables $x=u, y=\frac{v}{u}$ to evaluate $\iint_{R} \frac{x y}{1+x^{2} y^{2}} d x d y$.
3. (6 points) Evaluate the iterated integral $\int_{y=0}^{\pi / 2} \int_{x=y}^{\pi / 2} \frac{6 y^{2} \sin \left(x^{2}\right)}{x^{2}} d x d y$ by first changing the order of integration.

Note: Problems 4-8 are on the other side of this page.
4. (6 points) Consider the function $f(x, y, z)=x y z e^{2 x y z}$.
(a) Find $\boldsymbol{\nabla} f(x, y, z)$, the gradient of f.
(b) Evaluate the line integral $\int_{\mathbf{c}} \boldsymbol{\nabla} f \cdot d \mathbf{s}$ along the path \mathbf{c} given by $\mathbf{c}(t)=\left(t^{2} \sin \left(\frac{\pi}{2}\right), t^{5} \cos (2 \pi t), 2 t\right)$ for $0 \leq t \leq 1$.
5. (6 points) Find the area of the portion of the sphere of radius 2 given by $x^{2}+y^{2}+z^{2}=4$ for which $x^{2}+y^{2} \leq 1$.
6. (6 points) Use Green's theorem to evaluate the line integral

$$
\int_{C} \frac{1}{x} e^{x y} d x+\left(x+\frac{1}{y} e^{x y}\right) d y
$$

where C is the circle parametrized by $3(\cos (t), \sin (t))$ for $0 \leq t \leq 2 \pi$.
7. (6 points) Use Stokes' theorem to evaluate $\iint_{S}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}$, where S is the surface $x^{2}+y^{2}+3 z^{2}=1$ with $z \leq 0$, and $\mathbf{F}(x, y, z)=\left(2 y,-2 x, z x^{3} y^{2}\right)$.
8. (6 points) Let $\mathbf{F}=\frac{\mathbf{r}}{r^{3}}$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=\|\mathbf{r}\|=\sqrt{x^{2}+y^{2}+z^{2}}$.

Use Gauss's Law to evaluate the following surface integrals and clearly explain how you applied Gauss's Law to arrive at your answer.
(a) $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{25}=1$.
(b) $\iint_{\Sigma} \mathbf{F} \cdot d \mathbf{S}$, where Σ is the sphere $(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=1$.

