Math 20E Homework Assignment 5 Due Monday, November 14, 2022

- 1. A metallic surface S is in the shape of a hemisphere $z = \sqrt{R^2 x^2 y^2}$, where (x, y) satisfies $x^2 + y^2 \leq R^2$. The mass density (mass per unit area) at $(x, y, z) \in S$ is given by $m(x, y, z) = x^2 + y^2$. Find the total mass of S.
- 2. Find the average value of $f(x, y, z) = x + z^2$ on the truncated cone $z^2 = x^2 + y^2$, with $3 \le z \le 4$.
- 3. Evaluate the integral $\iint_{S} (1-z) dS$, where S is the graph of $z = 1 x^2 y^2$, with $x^2 + y^2 \le 1$.
- 4. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, with $\mathbf{F}(x, y, z) = (x, y, z)$, and S the part of the plane x + y + z = 1 with $x \ge 0$, $y \ge 0$, and $z \ge 0$.
- 5. Let \mathcal{S} be the ellipsoid $\left(\frac{x}{4}\right)^2 + \left(\frac{y}{3}\right)^2 + \left(\frac{z}{2}\right)^2 = 1$. Compute the flux of $\mathbf{F} = (0, 0, z)$ over the portion of \mathcal{S} where $x \le 0, y \le 0, z \le 0$ with upward-pointing normal.
- 6. Let $\mathbf{v} = (0, 0, z)$ be the velocity field (in meters per second) in \mathbb{R}^3 . Compute the volume flow rate (in cubic meters per second) through the upper upper hemisphere $(z \ge 0)$ of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 7. A net with surface described by y = 0 with $x^2 + z^2 \le 1$ is dipped into a river in which the water flows according to the velocity field $\mathbf{v} = (x y, z + y + 4, z^2)$. Determine the volume flow rate across the net.
- 8. Compute the area enclosed by the ellipse $\left(\frac{x}{c}\right)^2 + \left(\frac{y}{d}\right)^2 = 1.$
- 9. Find the area of the region between the x-axis and the cycloid parametrized by $\mathbf{r}(t) = (t \sin(t), 1 \cos(t))$ with $0 \le t \le 2\pi$.
- 10. Let $P(x,y) = \frac{-y}{x^2 + y^2}$ and $Q(x,y) = \frac{x}{x^2 + y^2}$, and let *D* be the unit disk $D = \{(x,y) \mid x^2 + y^2 \le 1\}$.
 - (a) Evaluate the area integral $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy$ over the unit disk D.
 - (b) Evaluate the line integral $\int_{\partial D} P \, dx + Q \, dy$ around ∂D , the unit circle with positive orientation.
 - (c) Briefly explain why Green's theorem failed.