Math 20E Homework Assignment 3 Due Monday, October 17, 2022

- 1. Let D be the unit disk: $x^2 + y^2 \le 1$. Evaluate $\iint_D \exp(x^2 + y^2) dx dy$.
- 2. Evaluate $\iint_D x^2 dx dy$ where D is determined by the two conditions $0 \le x \le y$ and $x^2 + y^2 \le 1$.
- 3. Evaluate $\iiint_W \sqrt{x^2 + y^2 + z^2} e^{-(x^2 + y^2 + z^2)} dx dy dz$, where W is the solid bounded by the two spheres

$$x^2 + y^2 + z^2 = a^2$$
 and $x^2 + y^2 + z^2 = b^2$ with $0 < a < b$

- 4. Evaluate $\iint_R (x+y) dx dy$, where R is the rectangle in the xy-plane with vertices at (0,1), (1,0), (3,4), (4,3).
- 5. Show that the path $\mathbf{c}(t) = (\sin(t), \cos(t), e^t)$ is a flow line of the vector field $\mathbf{F}(x, y, z) = (y, -x, z)$.
- 6. Let $\mathbf{F}(x, y, z) = (yz, xz, xy)$. Find a function $f : \mathbb{R}^3 \to \mathbb{R}$ such that $\mathbf{F} = \nabla f$.
- 7. Evaluate the path integral $\int_{\mathbf{c}} f(x, y, z) ds$ with f(x, y, z) = x + y + z and $\mathbf{c}(t) = (\sin(t), \cos(t), t)$ for $t \in [0, 2\pi]$.
- 8. Find the average y coordinate of the points on the semicircle parametrized by $\mathbf{c} : [0, \pi] \to \mathbb{R}^3$ given by $\mathbf{c}(t) = (0, a \sin(t), a \cos(t))$ with a > 0.
- 9. Evaluate $\int_{\mathbf{c}} f \, ds$, where f(x, y, z) = z and $\mathbf{c}(t) = (t \cos(t), t \sin(t), t)$ for $0 \le t \le t_0$.
- 10. Find the average z coordinate on the path $\mathbf{c}(t) = (t \cos(t), t \sin(t), t)$ for $0 \le t \le t_0$.