Math 20E Homework Assignment 1 Due 11:00pm Monday, October 3, 2022

- 1. Find an equation for the tangent plane to $f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$ at $(x_0, y_0, z_0) = (1, 0, 1)$.
- 2. Compute the matrix of partial derivatives of f(x, y, z) = (x + y, x y, xy).
- 3. Let $w = x^2 + y^2 + z^2$, x = uv, $y = u\cos(v)$, and $z = u\sin(v)$. Use the chain rule to find $\frac{\partial w}{\partial u}$ when (u, v) = (1, 0).
- 4. Let $g(u,v) = (e^u, u + \sin(v))$ and f(x, y, z) = (xy, yz). Compute $\mathbf{D}(g \circ f)(0, 1, 0)$ using the chain rule.
- 5. Evaluate the iterated integral $\int_{1}^{3} \int_{1}^{2} \frac{xy}{(x^2+y^2)^{\frac{3}{2}}} dx dy.$
- 6. Evaluate the double integral $\iint_R (x^2y^2 + x) dy dx$, where $R = [0, 2] \times [-1, 0]$.
- 7. Compute the volume of the region over the rectangle $[0,1] \times [0,1]$ and under the graph z = xy.
- 8. Compute the volume of the solid bounded by the xz plane, the yz plane, the xy plane, the planes x = 1 and y = 1, and the surface $z = x^2 + y^4$.
- 9. Evaluate the double integral $\iint_D xy \, dA$, where D is the triangular region whose vertices are (0,0), (0,2), (2,0).
- 10. Evaluate $\iint_D y \, dA$, where D is the set of points (x, y) such that $0 \le \frac{2x}{\pi} \le y \le \sin(x)$.