Math 142	1	
November	22,	$\boldsymbol{2017}$

Midterm Exam 2 v. A	Name:
(Total Points: 25)	PID:

Instructions

- 1. Write your Name and PID in the spaces provided above.
- 2. Make sure your Name is on every page.
- 3. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 4. Put away ANY devices that can be used for communication or can access the Internet.
- 5. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 6. Read each question carefully and answer each question completely.
- 7. Write your solutions clearly in the spaces provided.
- 8. Show all of your work. No credit will be given for unsupported answers, even if correct.
- (1 point) 0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions given before the exam or written on the chalkboard during the exam.
- (6 points) 1. Let $f:(0,1)\to\mathbb{R}$ be given by $f(x)=\cos\left(\frac{1}{x}\right)$. f is continuous since it is the composition of continuous functions and its image f((0,1)) is bounded since $|f(x)|\leq 1$ for all x in (0,1). Show that f is not uniformly continuous.

(6 points) 2. Consider the strictly increasing function

$$f: [0,1) \cup [2,4] \to \mathbb{R}$$

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1, \\ x - 1 & \text{if } 2 \le x \le 4. \end{cases}$$

(a) Is f continuous? Justify your answer.

(b) Is f^{-1} continuous? Justify your answer.

v. A	page	3	\mathbf{of}	1	١
V • 1 1	page	0	OI	4	,

Name: _____

(6 points) 3. A function $f: \mathbb{R} \to \mathbb{R}$ has the property that there is a number C > 0 such that $|f(x)| \leq Cx^2$ for all x.

Prove that $\lim_{x\to 0} \frac{f(x)}{x} = 0$.

v. A	(page	4	of	4
	(Page	7	0.	7

Name:

(6 points) 4. (a) Show that f(x) = |x| is not differentiable at x = 0.

(b) Show that if $f: \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 , then f is continuous at x_0 .