Math 142A Homework Assignment 6 Due Friday, December 2, 2022

- 1. Let k be a natural number. Prove that $\lim_{x \to 1} \frac{x^k 1}{x 1} = k$.
- 2. Suppose that a continuous function $f : \mathbb{R} \to \mathbb{R}$ is periodic; that is, there is a number p > 0 such that f(x+p) = f(x) for all $x \in \mathbb{R}$. Show that $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous.
- 3. A function $f: D \to \mathbb{R}$ is said to be *Lipschitz* provided that there is a number $C \ge 0$ with

$$|f(u) - f(v)| \le C |u - v|$$
 for all u and v in D .

Show that if a function f is a Lipschitz function on D, then it is *uniformly* continuous on D.

- 4. Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S.
- 5. Let f be a continuous function on $[0, \infty)$. Prove that if f is uniformly continuous on $[k, \infty)$ for some k > 0, then f is uniformly continuous on $[0, \infty)$.
- 6. Let f be a continuous function on [a, b]. Show that the function f^* defined by

$$f^*(x) = \sup \{ f(y) \mid a \le y \le x \}, \text{ for } x \in [a, b],$$

is an increasing continuous function on [a, b].

- 7. Suppose the limits $L_1 = \lim_{x \to a^+} f_1(x)$ and $L_2 = \lim_{x \to a^+} f_2(x)$ both exist.
 - (a) Show that if $f_1(x) \leq f_2(x)$ for all x in some interval (a, b), then $L_1 \leq L_2$.
 - (b) Suppose $f_1(x) < f_2(x)$ for all x in some interval (a, b). Can you conclude that $L_1 < L_2$?
- 8. Show that if $\lim_{x \to a^+} f_1(x) = \lim_{x \to a^+} f_3(x) = L$ and if $f_1(x) \le f_2(x) \le f_3(x)$ for all x in some interval (a, b), then $\lim_{x \to a^+} f_2(x) = L$. (Note: Be sure to show that $\lim_{x \to a^+} f_2(x)$ exists, since this is not assumed.)
- 9. Let $f(x) = \frac{\sqrt{1+3x^2}-1}{x^2}$ for $x \neq 0$. Show that $\lim_{x \to 0} f(x)$ exists and determine its value. Be sure to justify all claims.
- 10. Let f_1 and f_2 be functions such that $\lim_{x \to a^S} f_1(x) = +\infty$ and such that the limit $L_2 = \lim_{x \to a^S} f_2(x)$ exists.
 - (a) Prove that $\lim_{x \to a^S} (f_1 + f_2)(x) = +\infty$ if $L_2 \neq -\infty$.
 - (b) Prove that $\lim_{x \to a^{S}} (f_{1} f_{2}) (x) = +\infty$ if $0 < L_{2} \le +\infty$.
 - (c) Prove that $\lim_{x \to a^S} (f_1 f_2)(x) = -\infty$ if $-\infty \le L_2 < 0$.
 - (d) What can you say about $\lim_{x\to a^S} (f_1 f_2)(x)$ if $L_2 = 0$?