Math 142A Homework Assignment 6

Due Friday, December 2, 2022

1. Let k be a natural number. Prove that $\lim _{x \rightarrow 1} \frac{x^{k}-1}{x-1}=k$.
2. Suppose that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is periodic; that is, there is a number $p>0$ such that $f(x+p)=f(x)$ for all $x \in \mathbb{R}$. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous.
3. A function $f: D \rightarrow \mathbb{R}$ is said to be Lipschitz provided that there is a number $C \geq 0$ with

$$
|f(u)-f(v)| \leq C|u-v| \quad \text { for all } u \text { and } v \text { in } D .
$$

Show that if a function f is a Lipschitz function on D, then it is uniformly continuous on D.
4. Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S.
5. Let f be a continuous function on $[0, \infty)$. Prove that if f is uniformly continuous on $[k, \infty)$ for some $k>0$, then f is uniformly continuous on $[0, \infty)$.
6. Let f be a continuous function on $[a, b]$. Show that the function f^{*} defined by

$$
f^{*}(x)=\sup \{f(y) \mid a \leq y \leq x\}, \text { for } x \in[a, b],
$$

is an increasing continuous function on $[a, b]$.
7. Suppose the limits $L_{1}=\lim _{x \rightarrow a^{+}} f_{1}(x)$ and $L_{2}=\lim _{x \rightarrow a^{+}} f_{2}(x)$ both exist.
(a) Show that if $f_{1}(x) \leq f_{2}(x)$ for all x in some interval (a, b), then $L_{1} \leq L_{2}$.
(b) Suppose $f_{1}(x)<f_{2}(x)$ for all x in some interval (a, b). Can you conclude that $L_{1}<L_{2}$?
8. Show that if $\lim _{x \rightarrow a^{+}} f_{1}(x)=\lim _{x \rightarrow a^{+}} f_{3}(x)=L$ and if $f_{1}(x) \leq f_{2}(x) \leq f_{3}(x)$ for all x in some interval (a, b), then $\lim _{x \rightarrow a^{+}} f_{2}(x)=L$. (Note: Be sure to show that $\lim _{x \rightarrow a^{+}} f_{2}(x)$ exists, since this is not assumed.)
9. Let $f(x)=\frac{\sqrt{1+3 x^{2}}-1}{x^{2}}$ for $x \neq 0$. Show that $\lim _{x \rightarrow 0} f(x)$ exists and determine its value. Be sure to justify all claims.
10. Let f_{1} and f_{2} be functions such that $\lim _{x \rightarrow a^{S}} f_{1}(x)=+\infty$ and such that the limit $L_{2}=\lim _{x \rightarrow a^{S}} f_{2}(x)$ exists.
(a) Prove that $\lim _{x \rightarrow a^{S}}\left(f_{1}+f_{2}\right)(x)=+\infty$ if $L_{2} \neq-\infty$.
(b) Prove that $\lim _{x \rightarrow a^{S}}\left(f_{1} f_{2}\right)(x)=+\infty$ if $0<L_{2} \leq+\infty$.
(c) Prove that $\lim _{x \rightarrow a^{S}}\left(f_{1} f_{2}\right)(x)=-\infty$ if $-\infty \leq L_{2}<0$.
(d) What can you say about $\lim _{x \rightarrow a^{S}}\left(f_{1} f_{2}\right)(x)$ if $L_{2}=0$?

