Math 142A Homework Assignment 5 Due Friday, November 18, 2022

1. Suppose that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at the point x_{0} and that $f\left(x_{0}\right)>0$. Show that there is an interval $I_{n}=\left(x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ for which $f(x)>0$ for every $x \in I_{n}$.
2. A function $f: D \rightarrow \mathbb{R}$ is said to be Lipschitz provided that there is a number $C \geq 0$ with

$$
|f(u)-f(v)| \leq C|u-v| \quad \text { for all } u \text { and } v \text { in } D .
$$

Show that a Lipschitz function is continuous.
3. Suppose the function $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ has the the property that $\lambda(u+v)=\lambda(u)+\lambda(v)$ for all u, v.
(a) Define the number m by $m:=\lambda(1)$. Show that $\lambda(x)=m x$ for all rational numbers x.
(b) Show that if λ is continuous, then $\lambda(x)=m x$ for all $x \in \mathbb{R}$.
4. (a) Let $f(x)= \begin{cases}1 & \text { if } x \text { is rational, } \\ 0 & \text { if } x \text { is irrational. }\end{cases}$

Show that f is discontinuous at every $x \in \mathbb{R}$.
(b) Let $h(x)= \begin{cases}x & \text { if } x \text { is rational, } \\ 0 & \text { if } x \text { is irrational. }\end{cases}$

Show that h is continuous at $x=0$ and at no other point.
5. Let f be a real-valued function whose domain is a subset of \mathbb{R}.

Show that f is continuous at $x_{0} \in \operatorname{dom}(f)$ if and only if for every sequence $\left(x_{n}\right)$ in $\operatorname{dom}(f) \backslash\left\{x_{0}\right\}$ converging to x_{0}, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.
6. Let f and g be continuous functions on $[a, b]$ such that $f(a) \geq g(a)$ and $f(b) \leq g(b)$. Show that there is at least one $x_{0} \in[a, b]$ at which $f\left(x_{0}\right)=g\left(x_{0}\right)$.
7. Prove that a polynomial $p(x)$ with odd degree has a least one real zero.
8. Suppose that the function $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Show that for any $n \in \mathbb{N}$ and points $x_{1}, x_{n}, \ldots, x_{n} \in[a, b]$, there is a point $z \in[a, b]$ such that $f(z)=\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)}{n}$.
9. Suppose that the function $f:[0,1] \rightarrow \mathbb{R}$ is continuous with $f(0)>0$, and $f(1)=0$. Show that there is a number $x_{0} \in(0,1]$ such that $f\left(x_{0}\right)=0$ and $f(x)>0$ for every $x \in\left[0, x_{0}\right)$.
10. Let $f(x)= \begin{cases}0 & \text { if } x=0, \\ \sin \left(\frac{1}{x}\right) & \text { otherwise. }\end{cases}$

Show that f has the intermediate value property on all of \mathbb{R}.

