Math 142A Homework Assignment 5 Due Friday, November 18, 2022

- 1. Suppose that the function $f : \mathbb{R} \to \mathbb{R}$ is continuous at the point x_0 and that $f(x_0) > 0$. Show that there is an interval $I_n = (x_0 - \frac{1}{n}, x_0 + \frac{1}{n})$ for some $n \in \mathbb{N}$ for which f(x) > 0 for every $x \in I_n$.
- 2. A function $f: D \to \mathbb{R}$ is said to be *Lipschitz* provided that there is a number $C \ge 0$ with

 $|f(u) - f(v)| \le C |u - v|$ for all u and v in D.

Show that a Lipschitz function is continuous.

- 3. Suppose the function $\lambda : \mathbb{R} \to \mathbb{R}$ has the property that $\lambda(u+v) = \lambda(u) + \lambda(v)$ for all u, v.
 - (a) Define the number m by $m := \lambda(1)$. Show that $\lambda(x) = mx$ for all rational numbers x.
 - (b) Show that if λ is continuous, then $\lambda(x) = m x$ for all $x \in \mathbb{R}$.
- 4. (a) Let $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$ Show that f is discontinuous at every $x \in \mathbb{R}$.
 - (b) Let $h(x) = \begin{cases} x & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$ Show that h is continuous at x = 0 and at no other point.
- 5. Let f be a real-valued function whose domain is a subset of \mathbb{R} . Show that f is continuous at $x_0 \in \text{dom}(f)$ if and only if for every sequence (x_n) in $\text{dom}(f) \setminus \{x_0\}$ converging to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.
- 6. Let f and g be continuous functions on [a, b] such that $f(a) \ge g(a)$ and $f(b) \le g(b)$. Show that there is at least one $x_0 \in [a, b]$ at which $f(x_0) = g(x_0)$.
- 7. Prove that a polynomial p(x) with odd degree has a least one real zero.
- 8. Suppose that the function $f:[a, b] \to \mathbb{R}$ is continuous. Show that for any $n \in \mathbb{N}$ and points $x_1, x_n, \ldots, x_n \in [a, b]$, there is a point $z \in [a, b]$ such that $f(z) = \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n}$.
- 9. Suppose that the function $f:[0, 1] \to \mathbb{R}$ is continuous with f(0) > 0, and f(1) = 0. Show that there is a number $x_0 \in (0, 1]$ such that $f(x_0) = 0$ and f(x) > 0 for every $x \in [0, x_0)$.
- 10. Let $f(x) = \begin{cases} 0 & \text{if } x = 0, \\ \sin\left(\frac{1}{x}\right) & \text{otherwise.} \end{cases}$

Show that f has the intermediate value property on all of \mathbb{R} .