Math 142A Homework Assignment 3 Due 11:00pm Friday, October 21, 2022

- 1. Let (r_n) be an enumeration of the set \mathbb{Q} of all rational numbers. Show there exists a subsequence (r_{n_k}) such that $\lim_{k\to\infty} = +\infty$.
- 2. Prove that $\liminf s_n = -\limsup(-s_n)$ for every sequence (s_n) . [Hint: See Definition 10.6 and Exercise 5.4]
- 3. Let S be a bounded set. Prove that there is an increasing sequence (s_n) in S such that $\lim s_n = \sup S$. Explain why if $\sup S$ is in S, it suffices to define $s_n = \sup S$ for all n.
- 4. Let (s_n) be an increasing sequence. Show that (s_n) has no dominant terms.
- 5. Let (s_n) be a strictly decreasing sequence; that is, $s_n > s_{n+1}$ for every $n \in \mathbb{N}$. Show that every term of (s_n) is a dominant term.
- 6. Show that a monotonically increasing sequence is bounded if it has a bounded subsequence.
- 7. Suppose the sequence (s_n) is monotonically increasing and that it has a convergent subsequence. Show that (s_n) converges.
- 8. Let c > 0. Consider the quadratic equation $x^2 x c = 0$, where x > 0. Define the sequence (x_n) recursively, as follows:

$$x_n = \begin{cases} 1 & \text{if } n = 1\\ \sqrt{c + x_{n-1}} & \text{if } n > 1 \end{cases}$$

Prove that (x_n) converges monotonically to the solution of the above quadratic equation.