Math 142A Homework Assignment 3

Due 11:00pm Friday, October 21, 2022

1. Let $\left(r_{n}\right)$ be an enumeration of the set \mathbb{Q} of all rational numbers. Show there exists a subsequence $\left(r_{n_{k}}\right)$ such that $\lim _{k \rightarrow \infty}=+\infty$.
2. Prove that $\liminf s_{n}=-\lim \sup \left(-s_{n}\right)$ for every sequence $\left(s_{n}\right)$.
[Hint: See Definition 10.6 and Exercise 5.4]
3. Let S be a bounded set. Prove that there is an increasing sequence $\left(s_{n}\right)$ in S such that $\lim s_{n}=\sup S$. Explain why if $\sup S$ is in S, it suffices to define $s_{n}=\sup S$ for all n.
4. Let $\left(s_{n}\right)$ be an increasing sequence. Show that $\left(s_{n}\right)$ has no dominant terms.
5. Let $\left(s_{n}\right)$ be a strictly decreasing sequence; that is, $s_{n}>s_{n+1}$ for every $n \in \mathbb{N}$. Show that every term of $\left(s_{n}\right)$ is a dominant term.
6. Show that a monotonically increasing sequence is bounded if it has a bounded subsequence.
7. Suppose the sequence $\left(s_{n}\right)$ is monotonically increasing and that it has a convergent subsequence. Show that $\left(s_{n}\right)$ converges.
8. Let $c>0$. Consider the quadratic equation $x^{2}-x-c=0$, where $x>0$. Define the sequence $\left(x_{n}\right)$ recursively, as follows:

$$
x_{n}= \begin{cases}1 & \text { if } n=1 \\ \sqrt{c+x_{n-1}} & \text { if } n>1\end{cases}
$$

Prove that $\left(x_{n}\right)$ converges monotonically to the solution of the above quadratic equation.

