Math 142A Homework Assignment 2

Due Friday, October 14, 2022

1. Suppose that $s_{n} \neq 0$ for every index n and that the limit $L=\lim \left|\frac{s_{n+1}}{s_{n}}\right|$ is defined.
(a) Show that if $L<1$, then $\lim s_{n}=0$.
(b) Show that if $L>1$, then $\lim \left|s_{n}\right|=+\infty$.
(See Exercise 9.12 in your text for a hint.)
2. Let $s_{1}=1$, and for $n \geq 1$, let $s_{n+1}=\sqrt{s_{n}+1}$. It turns out that $\left(s_{n}\right)$ converges. Assume this fact and show that $\operatorname{limit} \lim s_{n}=\frac{1}{2}(1+\sqrt{5})$.
3. Let $x_{1}=1$ and $x_{n+1}=3 x_{n}^{2}$ for $n \geq 1$.
(a) Show that if $a=\lim x_{n}$, then $a=\frac{1}{3}$ or $a=0$.
(b) Does $\lim x_{n}$ exist? Justify your answer.
(c) Explain the apparent contradiction between the result in part (a) and part (b).
4. Show that $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$ for all $a \in \mathbb{R}$.
5. (a) Verify that $1+a+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}$ for $a \neq 1$.
(b) Determine $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)$ for $|a|<1$.
(c) What is $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)$ for $a \geq 1$?
6. Let S be a bounded nonempty subset of \mathbb{R} such that $\sup (S) \notin S$. Show that there is a sequence $\left(s_{n}\right)$ of points in S such that $\lim s_{n}=\sup (S)$.
7. Let $\left(s_{n}\right)$ be a sequence such that $\left|s_{n+1}-s_{n}\right|<2^{-n}$ for all $n \in \mathbb{N}$.
(a) Prove that $\left(s_{n}\right)$ is a Cauchy sequence and, therefore, a convergent sequence.
(b) Is $\left(s_{n}\right)$ a Cauchy sequence if we only assume that $\left|s_{n+1}-s_{n}\right|<\frac{1}{n}$ for all $n \in \mathbb{N}$?
8. Let $\left(s_{n}\right)$ be a sequence. Define the sequence $\left(\sigma_{n}\right)$ by $\sigma_{n}=\frac{s_{1}+s_{2}+\cdots+s_{n}}{n}$. $\left(\sigma_{n}\right)$ is called the sequence of Cesàro means for $\left(s_{n}\right)$.
(a) Show that if $\left(s_{n}\right)$ is an increasing sequence, then $\left(\sigma_{n}\right)$ is an increasing sequence.
(b) Show that if $s_{n} \rightarrow s$, then $\sigma_{n} \rightarrow s$.
9. Your textbook's proof of Theorem 10.2 only proves that bounded increasing sequences converge. Prove: All bounded decreasing sequences converge.
10. (a) Let $\left(s_{n}\right)$ be a monotone sequence. Prove that $\left(s_{n}\right)$ converges if and only if $\left(s_{n}^{2}\right)$ converges.
(b) Find a non-monotone sequence $\left(t_{n}\right)$ such that $\left(t_{n}^{2}\right)$ converges but $\left(t_{n}\right)$ does not converge.
