Math 142A Homework Assignment 2 Due Friday, October 14, 2022

- 1. Suppose that $s_n \neq 0$ for every index *n* and that the limit $L = \lim_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right|$ is defined.
 - (a) Show that if L < 1, then $\lim s_n = 0$.
 - (b) Show that if L > 1, then $\lim |s_n| = +\infty$.
 - (See Exercise 9.12 in your text for a hint.)
- 2. Let $s_1 = 1$, and for $n \ge 1$, let $s_{n+1} = \sqrt{s_n + 1}$. It turns out that (s_n) converges. Assume this fact and show that limit $\lim s_n = \frac{1}{2} (1 + \sqrt{5})$.
- 3. Let $x_1 = 1$ and $x_{n+1} = 3x_n^2$ for $n \ge 1$.
 - (a) Show that if $a = \lim x_n$, then $a = \frac{1}{3}$ or a = 0.
 - (b) Does $\lim x_n$ exist? Justify your answer.
 - (c) Explain the apparent contradiction between the result in part (a) and part (b).
- 4. Show that $\lim_{n \to \infty} \frac{a^n}{n!} = 0$ for all $a \in \mathbb{R}$.
- 5. (a) Verify that $1 + a + a^2 + \dots + a^n = \frac{1 a^{n+1}}{1 a}$ for $a \neq 1$.
 - (b) Determine $\lim_{n \to \infty} (1 + a + a^2 + \dots + a^n)$ for |a| < 1.
 - (c) What is $\lim_{n \to \infty} (1 + a + a^2 + \dots + a^n)$ for $a \ge 1$?
- 6. Let S be a bounded nonempty subset of \mathbb{R} such that $\sup(S) \notin S$. Show that there is a sequence (s_n) of points in S such that $\lim s_n = \sup(S)$.
- 7. Let (s_n) be a sequence such that $|s_{n+1} s_n| < 2^{-n}$ for all $n \in \mathbb{N}$.
 - (a) Prove that (s_n) is a Cauchy sequence and, therefore, a convergent sequence.
 - (b) Is (s_n) a Cauchy sequence if we only assume that $|s_{n+1} s_n| < \frac{1}{n}$ for all $n \in \mathbb{N}$?

8. Let (s_n) be a sequence. Define the sequence (σ_n) by $\sigma_n = \frac{s_1 + s_2 + \dots + s_n}{n}$.

- (σ_n) is called the sequence of Cesàro means for (s_n) .
- (a) Show that if (s_n) is an increasing sequence, then (σ_n) is an increasing sequence.
- (b) Show that if $s_n \to s$, then $\sigma_n \to s$.
- Your textbook's proof of Theorem 10.2 only proves that bounded increasing sequences converge.
 Prove: All bounded *decreasing* sequences converge.
- 10. (a) Let (s_n) be a monotone sequence. Prove that (s_n) converges if and only if (s_n²) converges.
 (b) Find a non-monotone sequence (t_n) such that (t_n²) converges but (t_n) does not converge.