Math 142A Homework Assignment 1 Due 11:00pm Friday, October 7, 2022

- 1. Show that $\sqrt{4+2\sqrt{3}}-\sqrt{3}$ is a rational number.
- 2. Find all rational solutions of the equation $x^8 4x^5 + 13x^3 7x + 1 = 0$. Be sure to explain how you know you found all the rational solutions.
- 3. (a) Show $|b| \le a$ if and only if $-a \le b \le a$. (b) Prove $||a| - |b|| \le |a - b|$ for all $a, b \in \mathbb{R}$.
- 4. Let $a, b \in \mathbb{R}$. Show that if $a < b_1$ for every $b_1 > b$, then $a \le b$.
- 5. Prove that if a > 0, then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$.
- 6. Let $a, b \in \mathbb{R}$. Show that if $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.
- 7. Let (t_n) be a bounded sequence; that is, there exists $M \ge 0$ such that $|t_n| \le M$ for all n. Let (s_n) be a sequence such that $\lim s_n = 0$. Prove that $\lim (s_n t_n) = 0$.
- 8. Consider three sequences $(a_n), (b_n)$, and (s_n) such that $a_n \leq s_n \leq b_n$ for all n, and $\lim a_n = \lim b_n = s$. Prove that $\lim s_n = s$.
- 9. Suppose (s_n) and (t_n) are sequences such that $|s_n| \le t_n$ for all n and $\lim t_n = 0$. Prove that $\lim s_n = 0$.
- 10. Let (s_n) be a sequence that converges.
 - (a) Show that if $s_n \ge a$ for all but finitely many n, then $\lim s_n \ge a$.
 - (b) Show that if $s_n \leq b$ for all but finitely many n, then $\lim s_n \leq b$.
 - (c) Conclude that if all but finitely many s_n belong to [a, b], then $\lim s_n$ belongs to [a, b].