Math 142A Homework Assignment 1

Due 11:00pm Friday, October 7, 2022

1. Show that $\sqrt{4+2 \sqrt{3}}-\sqrt{3}$ is a rational number.
2. Find all rational solutions of the equation $x^{8}-4 x^{5}+13 x^{3}-7 x+1=0$. Be sure to explain how you know you found all the rational solutions.
3. (a) Show $|b| \leq a$ if and only if $-a \leq b \leq a$.
(b) Prove $||a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.
4. Let $a, b \in \mathbb{R}$. Show that if $a<b_{1}$ for every $b_{1}>b$, then $a \leq b$.
5. Prove that if $a>0$, then there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<a<n$.
6. Let $a, b \in \mathbb{R}$. Show that if $a \leq b+\frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.
7. Let $\left(t_{n}\right)$ be a bounded sequence; that is, there exists $M \geq 0$ such that $\left|t_{n}\right| \leq M$ for all n. Let $\left(s_{n}\right)$ be a sequence such that $\lim s_{n}=0$. Prove that $\lim \left(s_{n} t_{n}\right)=0$.
8. Consider three sequences $\left(a_{n}\right),\left(b_{n}\right)$, and $\left(s_{n}\right)$ such that $a_{n} \leq s_{n} \leq b_{n}$ for all n, and $\lim a_{n}=\lim b_{n}=s . \quad$ Prove that $\lim s_{n}=s$.
9. Suppose $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are sequences such that $\left|s_{n}\right| \leq t_{n}$ for all n and $\lim t_{n}=0$. Prove that $\lim s_{n}=0$.
10. Let $\left(s_{n}\right)$ be a sequence that converges.
(a) Show that if $s_{n} \geq a$ for all but finitely many n, then $\lim s_{n} \geq a$.
(b) Show that if $s_{n} \leq b$ for all but finitely many n, then $\lim s_{n} \leq b$.
(c) Conclude that if all but finitely many s_{n} belong to $[a, b]$, then $\lim s_{n}$ belongs to $[a, b]$.
