Math 142A Homework Assignment 6

Due Thursday, February 25, 2021

1. Show that there does not exist a strictly increasing function $f: \mathbb{Q} \rightarrow \mathbb{R}$ such that $f(\mathbb{Q})=\mathbb{R}$.
2. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and one-to-one and that $f(a)<f(b)$.
(a) Let c be any point in the open interval (a, b). Prove that $f(a)<f(c)<f(b)$.
(b) Prove that f is strictly increasing.
3. A point x_{0} in D is said to be an isolated point of D if there is an $r>0$ such that $D \cap$ $\left(x_{0}-r, x_{0}+r\right)=\left\{x_{0}\right\}$; that is, the only point of D in $\left(x_{0}-r, x_{0}+r\right)$ is x_{0} itself.
(a) Prove that a point x_{0} in D is either an isolated point or a limit point of D.
(b) Suppose that x_{0} is an isolated point of D. Prove that every function $f: D \rightarrow \mathbb{R}$ is continuous at x_{0}.
(c) Prove that if x_{0} is a limit point of D, then $f: D \rightarrow \mathbb{R}$ is continuous at x_{0} if and only if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
4. Let $\left\{x_{n}\right\}$ be a bounded sequence such that $x_{m} \neq x_{n}$ whenever $m \neq n$. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and that $f\left(x_{n}\right)=0$ for every index n. Show that there is a point x_{0} at which $f\left(x_{0}\right)=0$ and $f^{\prime}\left(x_{0}\right)=0$.
5. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and monotonically increasing. Show that $f^{\prime}(x) \geq 0$ for all x.
6. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x_{0}. Determine the value of the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{h} .
$$

