Math 142A Homework Assignment 5 Due Thursday, February 18, 2021

- 1. Show that $f:[1,\infty) \to \mathbb{R}$ given by $f(x) = \sqrt{x}$ satisfies the $\varepsilon \delta$ criterion on $[1,\infty)$. Conclude that f is uniformly continuous.
- 2. Show that if $f:(a,b) \to \mathbb{R}$ is uniformly continuous, then f is bounded; that is, f((a,b)) is bounded.
- 3. Suppose a continuous function $f : \mathbb{R} \to \mathbb{R}$ is periodic; that is, there is a number p > 0 such that f(x+p) = f(x) for all x. Show that $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous.
- 4. Exhibit an example of
 - (a) a continuous function $f:(0,1) \to \mathbb{R}$ that is not bounded.
 - (b) a bounded continuous function $g:(0,1)\to\mathbb{R}$ that is not uniformly continuous.
- 5. Let $f: [0, \infty) \to \mathbb{R}$ be a monotone function. Prove that $\lim_{x \to \infty} f(x) = L$ for some number L if and only if $f([0, \infty))$ is bounded.
- 6. Show that if $f : [a, b] \to \mathbb{R}$ is a monotone function satisfying the intermediate value property, then f is continuous.