1. Given a sequence $\left\{a_{n}\right\}$. Prove that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$ if and only if $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$.
2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences. Prove the following statements.
(a) If $a_{n} \rightarrow L$ and $a_{n} \leq K$ for every index n, then $L \leq K$.
(b) If $a_{n} \rightarrow L, b_{n} \rightarrow K$, and $a_{n} \leq b_{n}$ for every index n, then $L \leq K$.
(c) If $a_{n} \rightarrow L, b_{n} \rightarrow L$, and $a_{n} \leq c_{n} \leq b_{n}$ for every n, then $c_{n} \rightarrow L$.
3. Given a sequence $\left\{c_{n}\right\}$. Prove that $c_{n} \rightarrow c$ if and only if $c_{n}-c \rightarrow 0$.
4. Prove that $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$.

Hint: Set $\alpha_{n}=n^{\frac{1}{n}}-1$ and show that $n=\left(1+\alpha_{n}\right)^{n} \geq 1+\frac{n(n-1)}{2} \alpha_{n}^{2}$ for every index n by applying the Binomial Formula.
5. Show that the set $(-\infty, 0]$ is closed.
6. (a) Show that every real number is the limit of a sequence of irrational numbers.
(b) Show that the set of irrational numbers fails to be closed.

