Math 142A Homework Assignment 1

Due Thursday, January 14, 2021

1. Let S and T be nonempty subsets of \mathbb{R} with the following property:

$$
s \leq t \text { for all } s \in S \text { and } t \in T
$$

(a) Show tht S is bounded above and that T is bounded below.
(b) Prove that $\sup S \leq \inf T$.
(c) Exhibit an example of such sets S and T where $S \cap T$ is nonempty.
(d) Exhibit an example of sets S and T where $\sup S=\inf T$ and $S \cap T$ is the empty set.
2. Prove that $\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2}$ for every natural number n.
3. Suppose that S is a nonempty set of integers that is bounded below. Show that S has a minimum.

Note: This exercise requires the following definition (which your textbook assumes without formally stating):
Definition. Let S be a nonempty subset of \mathbb{R}.
(a) If S contains a largest element s_{0} [that is, $s_{0} \in S$ and $s \leq s_{0}$ for all $\left.s \in S\right]$, then we call s_{0} the maximum of S and write $s_{0}=\max S$.
(b) If S contains a smallest element, then we call the smallest element the minimum of S and write $s_{0}=\min S$.
4. Given a real number a, define $S:=\{x \in \mathbb{Q} \mid x<a\}$. Prove that $\sup S=a$.
5. Suppose $a \leq \frac{1}{n}$ for every natural number n. Show that $a \leq 0$.
6. Let x and y be real numbers. Use the triangle inequality to prove that $||x|-|y|| \leq|x+y|$.

