1. Find the radius of convergence of each of the following series:

(a)
$$\sum_{n=0}^{\infty} z^{3^n} = z + z^3 + z^9 + z^{27} + z^{81} + z^{243} \cdots$$

(b)
$$\sum_{p \text{ prime}} z^p = z^2 + z^3 + z^5 + z^7 + z^{11} + z^{13} + \cdots$$

- 2. Define $f(z) = \sum_{n=0}^{\infty} z^{n!}$.
 - (a) Show that f(z) is analytic on the open unit disk $\{z \in \mathbb{C} \mid |z| < 1\}$.
 - (b) Show that $|f(r\lambda)| \to +\infty$ as $r \to 1$ whenever λ is a root of unity.
- 3. Define f(z) := Log(z).
 - (a) Find the power series expansion of f(z) about the point z = i 2 and show that the radius of convergence is $R = \sqrt{5}$.
 - (b) Explain why this does not contradict the fact that Log(z) has a discontinuity at z = -2.
- 4. Find the power series expansion of the principal branch $\operatorname{Tan}^{-1}(z)$ of the inverse tangent function about z=0. What is the radius of convergence?

Hint: Integrate the power series expansion of its derivative term by term.

5. Let E be a bounded subset of \mathbb{C} over which area integrals can be defined, and set

$$f(w) := \iint_E \frac{1}{w-z} dx dy;$$
 where $z = x + iy$ and $w \in \mathbb{C} \setminus E$.

Show that f(w) is analytic at ∞ , and find a formula for the coefficients of the power series of (w) at ∞ in descending powers of w.

[Hint: Try a geometric series expansion.]

- 6. Calculate the terms up to order five of the power series expansion about z = 0 of the function $f(z) = \frac{z}{\sin(z)}$.
- 7. Define $f(z) = \frac{e^z}{1+z}$. Show that:

(a)
$$f(z) = 1 + \frac{1}{2}z^2 - \frac{1}{3}z^3 + \frac{3}{8}z^4 - \frac{11}{30}z^5 + \cdots$$

- (b) The general n^{th} term of the power series is given by $a_n = (-1)^n \left[\frac{1}{2!} \frac{1}{3!} + \dots + \frac{(-1)^n}{n!} \right]$, for $n \ge 2$.
- (c) What is the radius of convergence of the series?
- 8. Show that the zeros of sin(z) are all simple.
- 9. Show that $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$, assuming only that the identity holds for z and w real.

- 10. Show that if the analytic function f(z) has a zero of order N at z_0 , then $f(z) = g(z)^N$ for some function g(z) analytic near z_0 and satisfying $g'(z_0) \neq 0$.
- 11. For each of the following functions, find the Laurent expansion centered at z=-1 that converges at $z=\frac{1}{2}$, and determine the largest open set (disk) on which the series converges.
 - (a) $\frac{1}{z^2 z}$
 - $(b) \ \frac{z-1}{z+1}$
- 12. Suppose that f(z) is analytic on the punctured plane $D = \mathbb{C} \setminus \{0\}$. Show that there is a constant c such that $f(z) \frac{c}{z}$ has a primitive in D. Provide a formula for c in terms of an integral of f(z).