Homework 3

- 1. Suppose that P and Q are smooth functions on the annulus $\{z \in \mathbb{C} \mid a < |z| < b\}$ that satisfy $\frac{\partial p}{\partial y} = \frac{\partial Q}{\partial x}$. Show directly using Green's theorem that $\oint_{|z|=r} P \, dx + Q \, dy$ is independent of the radius r, for a < r < b.
- 2. Show that if D is a bounded domain with smooth boundary, then

$$\int_{\partial D} \bar{z} \, dz = 2i \operatorname{Area}(D).$$

3. Suppose h(z) is a continuous function on a curve γ . Show that

$$H(w) = \int_{\gamma} \frac{h(z)}{z - w} \, dz, \ w \in \mathbb{C} \setminus \gamma,$$

is analytic on the complement of γ , $\mathbb{C} \setminus \gamma$. Find H'(w).

- 4. Show that an analytic function f(z) has a primitive in a domain D if and only if $\int_{\gamma} f(z) dz = 0$ for every closed path γ in D.
- 5. By integrating $e^{-\frac{z^2}{2}}$ around a rectangle \mathcal{R}_t with vertices -R, R, R+it, -R+it, and sending $R \to \infty$; show that

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} e^{-itx} \, dx = e^{-\frac{t^2}{2}}, \ -\infty < t < \infty.$$

Use the known value of the integral for t = 0.

Remark: This shows that the Fourier transform of $e^{-\frac{x^2}{2}}$ is $e^{-\frac{t^2}{2}}$, a fundamental result in the study of the Fourier transform.

6. Suppose f(z) is continuous in the closed disk $\{z \mid |z| \le R\}$ and analytic on the open disk $\{z \mid |z| < R\}$. Show that $\oint_{|z|=R} f(z) dz = 0$.

[Hint: Approximate f(z) uniformly by $f_r(z) := f(rz)$. Why can't we just use Green's theorem?]

- 7. Show that a harmonic function is C^{∞} ; that is, a harmonic function has partial derivatives of all orders.
- 8. Use the Cauchy integral formula to derive the mean value property of harmonic functions:

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u\left(z_0 + \rho e^{i\theta}\right) d\theta, \ z_0 \in D,$$

whenever u(z) is harmonic in the domain D and the closed disk $|z - z_0| \le \rho$ is contained in D.

9. Show that the series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

converges.

[Hint: Show that the partial sums of the series satisfy $S_2 < S_4 < S_6 < \cdots < S_5 < S_3 < S_1$.]

10. Show that

(a)
$$\sum_{k=2}^{\infty} \frac{1}{k \log(k)}$$
 diverges.
(b) $\sum_{k=2}^{\infty} \frac{1}{k (\log(k))^2}$ converges.

- 11. Show that $\sum_{k=1}^{\infty} \frac{z^{\kappa}}{k^2}$ converges uniformly for |z| < 1.
- 12. Show that

(a)
$$\sum_{k=1}^{\infty} \frac{z^k}{k}$$
 does not converge uniformly for $|z| < 1$.
(b) $\sum_{k=1}^{\infty} \frac{z^k}{k}$ converges uniformly for $|z| \le \rho$ whenever $0 < \rho < 1$.