1. Let $S \subset \mathbb{C}$ be the set $S=\{z=-i t \mid t \geq 0\}$. Define explicitly a continuous branch of $\log (z)$ on $\mathbb{C} \backslash S$; that is, the complex plane slit along the negative imaginary axis. (Hint: Recall that $\log (z)$, the principal branch of $\log (z)$, is explicitly defined as $\log (z)=\log |z|+i \theta$, with $-\pi<\theta<\pi$. Be sure to explain why the strict inequalities are required for continuity.)
2. Determine the value(s) of $\log \left[(1+i)^{2 i}\right]$.
3. (a) Set $w=\cos (z)$ and $\zeta=e^{i z}$. Show that $\zeta=w+\sqrt{w^{2}-1}$, where $\sqrt{w^{2}-1}=\left\{\xi \mid \xi^{2}=w^{2}-1\right\}$. How many elements are in $\sqrt{w^{2}-1}$ and how are they related?
(b) Show that

$$
\cos ^{-1}(w)=-i \log \left[w+\sqrt{w^{2}-1}\right]
$$

where both sides of the identity are to be interpreted as subsets of \mathbb{C}.
4. Let $h:[0,1] \rightarrow \mathbb{C}$ be a continuous complex-valued function $h(t)$ on the unit interval. Define

$$
H(z):=\int_{0}^{1} \frac{h(t)}{t-z} d t, \quad z \in \mathbb{C} \backslash[0,1]
$$

Show that $H(z)$ is analytic on $\mathbb{C} \backslash[0,1]$ and compute its derivative. (Hint: Differentiate 'by hand;' that is, by using the limit definition of the complex derivative.)
5. Given an analytic function $f(z)=u(z)+i v(z)$ (with u, v real-valued), we can write z in polar form $z=r e^{i \theta}$ and define $u(r, \theta):=u\left(r e^{i \theta}\right)$ and $v(r, \theta):=v\left(r e^{i \theta}\right)$.
(a) Derive the polar form of the Cauchy-Riemann equations for u and v :

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r} .
$$

(If you are studying a physical science, you should check that this definition yields consistent units across both equations.)
(b) Check that for any integer m, the functions $u(r, \theta)=r^{m} \cos (m \theta)$ and $v(r, \theta)=r^{m} \sin (m \theta)$ satisfy (the polar form of) the Cauchy-Riemann equations.
6. Recall that $\cos ^{-1}(z)=-i \log \left[z+\sqrt{z^{2}-1}\right]$ (with $\sqrt{z^{2}-1}=\left\{w \mid w^{2}=z^{2}-1\right\}$). Suppose $g(z)$ is an analytic branch of $\cos ^{-1}(z)$, defined on a domain D.
(a) Determine $g^{\prime}(z)$.
(b) Do different branches of $\cos ^{-1}(z)$ have the same derivative?
7. Let $f(z)$ be a bounded analytic function, defined on a bounded domain D in the complex plane, and suppose that $f(z)$ is one-to-one. Show that the area of $f(D)$ is given by

$$
\operatorname{Area}(f(D))=\iint_{D}\left|f^{\prime}(z)\right|^{2} d x d y
$$

(Hint: Review the change of variables theorem from your vector calculus course.)
8. Show that Laplace's equation in polar coordinates is

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 .
$$

(If you are studying a physical science, you should check that this definition yields consistent units for each term in the equation.)
9. (a) Using Laplace's equation in polar coordinates, show that $u(r, \theta)=\theta \log (r)$ is harmonic. (Remember that $r>0$.)
(b) Using polar form of the Cauchy-Riemann equations, find a harmonic conjugate $v(r, \theta)$ for $u(r, \theta)$. What is the corresponding analytic function $f(z)=u(z)+i v(z)$?
10. Given a positive number B with $0<B<\pi$. Find a conformal map of the wedge $\{z \mid-B<\arg (z)<B\}$ onto the right half-plane $\{w \mid \operatorname{Re}(w)>0\}$.
11. The inversion mapping $f(z)=\frac{1}{z}$ is defined on the extended complex plane $\mathbb{C}^{*}=\mathbb{C} \cup\{\infty\}$ by defining $f(0)=\infty, f(\infty)=0$, and $f(1)=1$. (Remember that this does not mean that ∞ is a complex number.)
(a) Show that the image of a straight line under f is a circle or a straight line, depending on whether or not the line passes through the origin.
(b) Show that the image of a circle under f is a straight line or a circle, depending on whether or not the circle passes through the origin.
Notice that both circles and straight lines in the complex plane \mathbb{C} correspond to circles on the Riemann sphere S.
12. Let $P(x, y)$ and $Q(x, y)$ be continuous complex-valued functions on a curve γ, and define a function $F(w)$ on $\mathbb{C} \backslash \gamma$ by

$$
F(w):=\int_{\gamma} \frac{P(x, y)}{z-w} d x+\int_{\gamma} \frac{Q(x, y)}{z-w} d y, \quad \text { where } z=x+i y
$$

(a) Show that $F(w)$ is analytic for $w \in \mathbb{C} \backslash \boldsymbol{\gamma}$.
(b) Express $F^{\prime}(w)$ as a line integral over γ.

