1. Given a complex number a and a positive real number $\rho > 0$. Show that the equation

$$|z|^2 - 2\operatorname{Re}(\bar{a}z) + |a|^2 = \rho^2$$

represents a circle centered at a with radius ρ .

[Hint: The set of points a distance ρ from a satisfy the equation $|z - a| = \rho$.]

- 2. Given a fixed $a \in \mathbb{C}$. Show that $\frac{|z-a|}{|1-\bar{a}z|} = 1$ if |z| = 1 and $1-\bar{a}z \neq 0$
- 3. Consider the polynomial $p(z) = z^3 + z^2 + z + 1$
 - (a) Verify that i is a zero of p.
 - (b) Find the other two zeros of p.
- 4. For which integers n is i an nth root of unity?
- 5. Let n be an integer with $n \ge 1$.
 - (a) Show that, for $z \neq 1$, $1 + z + z^2 + \dots + z^n = \frac{1 z^{n+1}}{1 z}$.
 - (b) Show that $1 + \cos(\theta) + \cos(2\theta) + \dots + \cos(n\theta) = \frac{1}{2} + \frac{\sin\left[\left(n + \frac{1}{2}\right)\theta\right]}{2\sin\left(\frac{\theta}{2}\right)}$.
- 6. Show that

$$\frac{(1+i\tan(\theta))^n}{(1-i\tan(\theta))^n} = \frac{1+i\tan(n\theta)}{1-i\tan(n\theta)}$$

for every integer n.

- 7. Find the six distinct sixth roots of z = -64.
- 8. Given a complex number $z \in \mathbb{C}$ and the point P on the unit sphere $S \in \mathbb{R}^3$ corresponding to z under stereographic projection. Show that the antipodal point -P corresponds to $-\frac{1}{\bar{z}}$ under stereographic projection.
- 9. Show that a rotation of the unit sphere S by π about the X-axis in \mathbb{R}^3 corresponds to the inversion $z \mapsto \frac{1}{z}$ of the complex plane \mathbb{C} under stereographic projection.

[Hint: First verify that rotation of the unit sphere S by π about the X-axis in \mathbb{R}^3 is represented by $(X,Y,Z)\mapsto (X,-Y,-Z)$.]

- 10. For each of the following sets of points on the unit sphere S in \mathbb{R}^3 , find an equation that determines the set of corresponding points in the complex plane \mathbb{C} under stereographic projection and describe that set geometrically.
 - (a) $\{(X, Y, Z) \in S \mid X^2 + Y^2 = 1\}.$
 - (b) $\{(X, Y, Z) \in S \mid X^2 + Z^2 = 1\}.$
 - (c) $\{(X, Y, Z) \in S \mid Y^2 + Z^2 = 1\}.$