PID:

Instructions

- 1. Write your Name and PID in the spaces provided above.
- 2. Make sure your Name is on every page.
- 3. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 4. Put away ANY devices that can be used for communication or can access the Internet.
- 5. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 6. Read each question carefully and answer each question completely.
- 7. Write your solutions clearly in the spaces provided.
- 8. Show all of your work. No credit will be given for unsupported answers, even if correct.
- (1 point)0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- (6 points) 1. Exhibit an example of each of the following functions. Be sure to include a brief explanation for why the function you chose is an example with the required properties.
 - (a) A function $f : [a, b] \to \mathbb{R}$ that is not bounded above.

(b) A bounded function $f : [a, b] \to \mathbb{R}$ that has no minimum.

v.A (page 2 of 4)

```
Name: _____
```

(6 points) 2. Let $f_1: (-1,1) \to \mathbb{R}$ be defined by

$$f_1(x) = \frac{1}{1 - x^2},$$

and $f_2: (-1,1) \to \mathbb{R}$ be defined by

$$f_2(x) = \sin\left(\frac{1}{1-x^2}\right).$$

(a) Extend f_1 to $f_1: [-1,1] \to \mathbb{R}$ by defining $f_1(-1) = f_1(1) = 0$. Is f_1 integrable on [-1,1]? Explain.

(b) Extend f_2 to $f_2: [-1,1] \to \mathbb{R}$ by defining $f_2(-1) = f_2(1) = 0$. Is f_2 integrable on [-1,1]? Explain.

Name: _____

(6 points) 3. Let $f : [a, b] \to \mathbb{R}$ be a continuous function such that $\int_c^d f \ge 0$ for all $[c, d] \subseteq [a, b]$. Prove that $f(x) \ge 0$ for all $x \in [a, b]$.

v.A (page 4 of 4)

Name: _____

(6 points) 4. Let $f : [a, b] \to \mathbb{R}$ be monotonically increasing.

(a) Show that f is bounded on [a, b].

(b) Let P_n be the regular partition of [a, b] into n partition intervals. Show that

$$\lim_{n \to \infty} U(f, P_n) - L(f, P_n) = 0.$$